On the proof of the solvability of a~linear problem arising in magnetohydrodynamics with the method of integral equations
Algebra i analiz, Tome 26 (2014) no. 6, pp. 172-197.

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper is concerned with a linear system of Fredholm–Volterra singular integral equations arising in the study of a linearized initial-boundary value problem of magnetohydrodymnamics for a fluid surrounded by an infinite vacuum region. It is proved that this system is solvable in the class of continuous functions satisfying the Hölder condition with respect to the spatial variables, which yields a classical solution of the problem in question.
Keywords: Fredholm–Volterra singular integral equations, classical solution.
@article{AA_2014_26_6_a8,
     author = {Sh. Sahaev and V. A. Solonnikov},
     title = {On the proof of the solvability of a~linear problem arising in magnetohydrodynamics with the method of integral equations},
     journal = {Algebra i analiz},
     pages = {172--197},
     publisher = {mathdoc},
     volume = {26},
     number = {6},
     year = {2014},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/AA_2014_26_6_a8/}
}
TY  - JOUR
AU  - Sh. Sahaev
AU  - V. A. Solonnikov
TI  - On the proof of the solvability of a~linear problem arising in magnetohydrodynamics with the method of integral equations
JO  - Algebra i analiz
PY  - 2014
SP  - 172
EP  - 197
VL  - 26
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AA_2014_26_6_a8/
LA  - en
ID  - AA_2014_26_6_a8
ER  - 
%0 Journal Article
%A Sh. Sahaev
%A V. A. Solonnikov
%T On the proof of the solvability of a~linear problem arising in magnetohydrodynamics with the method of integral equations
%J Algebra i analiz
%D 2014
%P 172-197
%V 26
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AA_2014_26_6_a8/
%G en
%F AA_2014_26_6_a8
Sh. Sahaev; V. A. Solonnikov. On the proof of the solvability of a~linear problem arising in magnetohydrodynamics with the method of integral equations. Algebra i analiz, Tome 26 (2014) no. 6, pp. 172-197. http://geodesic.mathdoc.fr/item/AA_2014_26_6_a8/

[1] Ladyzhenskaya O. A., Solonnikov V. A., “Reshenie nekotorykh nestatsionarnykh zadach magnitnoi gidrodinamiki dlya vyazkoi neszhimaemoi zhidkosti”, Tr. Mat. in-ta RAN, 59, 1960, 115–173 | MR

[2] Ladyzhenskaya O. A., Solonnikov V. A., “O printsipe linearizatsii i invariantnykh mnogoobraziyakh dlya zadach magnitnoi gidrodinamiki”, Zap. nauch. semin. LOMI, 38, 1973, 46–93 | MR | Zbl

[3] Mosconi S., Solonnikov V. A., “On a problem of magnetohydrodynamics in a multi-connected domain”, Nonlinear Anal., 74:2 (2011), 462–478 | DOI | MR | Zbl

[4] Sakhaev Sh., “Reshenie pervoi nachalno-kraevoi zadachi dlya nestatsionarnoi sistemy uravnenii Maksvella”, Tr. In-ta mat. mekh. ANKazSSR, 2, 1971, 69–77

[5] Grubb G., Functional calculus of pseudodifferential boundary problems, Progr. Math., 65, Birkhäuser, Boston, MA, 1996 | MR | Zbl

[6] Solonnikov V. A., “Nachalno-kraevaya zadacha dlya obobschennoi sistemy uravnenii Stoksa v poluprostranstve”, Zap. nauch. semin. POMI, 271, 2000, 224–275 | MR | Zbl

[7] Smirnov V. I., Kurs vysshei matematiki, v. 4, GITTL, M., 1967

[8] Smirnov V. I., Kurs vysshei matematiki, v. 3, Nauka, M., 1974