Rigidity theorem for presheaves with $\Omega$-transfers
Algebra i analiz, Tome 26 (2014) no. 6, pp. 78-98.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{AA_2014_26_6_a4,
     author = {A. Neshitov},
     title = {Rigidity theorem for presheaves with $\Omega$-transfers},
     journal = {Algebra i analiz},
     pages = {78--98},
     publisher = {mathdoc},
     volume = {26},
     number = {6},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AA_2014_26_6_a4/}
}
TY  - JOUR
AU  - A. Neshitov
TI  - Rigidity theorem for presheaves with $\Omega$-transfers
JO  - Algebra i analiz
PY  - 2014
SP  - 78
EP  - 98
VL  - 26
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AA_2014_26_6_a4/
LA  - ru
ID  - AA_2014_26_6_a4
ER  - 
%0 Journal Article
%A A. Neshitov
%T Rigidity theorem for presheaves with $\Omega$-transfers
%J Algebra i analiz
%D 2014
%P 78-98
%V 26
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AA_2014_26_6_a4/
%G ru
%F AA_2014_26_6_a4
A. Neshitov. Rigidity theorem for presheaves with $\Omega$-transfers. Algebra i analiz, Tome 26 (2014) no. 6, pp. 78-98. http://geodesic.mathdoc.fr/item/AA_2014_26_6_a4/

[1] Altman A., Kleiman S., Introduction to Grothendieck duality theory, Lecture Notes in Math., 146, Springer-Verlag, Berlin, 1970 | MR

[2] Fulton W., Intersection theory, Ergeb. Math. Grenzgebiete (3), 2, Springer-Verlag, Berlin, 1984 | MR | Zbl

[3] Gabber O., “K-theory of Henselian local rings and Henselian pairs”, Algebraic K-theory, Commutative Algebra, and Algebraic Geometry (Santa Margherita Ligure, 1989), Contemp. Math., 126, Amer. Math. Soc., Providence, RI, 1992, 59–70 | DOI | MR

[4] Gillet H., Thomason R., “The K-theory of strict Hensel local rings and a theorem of Suslin”, J. Pure Appl. Algebra, 34:2–3 (1984), 241–254 | DOI | MR | Zbl

[5] Hartshorne R., Algebraic geometry, Grad. Texts in Math., 52, Springer-Verlag, New York, 1977 | DOI | MR | Zbl

[6] Hornbostel J., Yagunov S., “Rigidity for Henselian local rings and $\mathbb A^1$-representable theories”, Math. Z., 255:2 (2007), 437–449 | DOI | MR | Zbl

[7] Levine M., Morel F., Algebraic cobordism, Springer Monogr. Math., Springer-Verlag, Berlin, 2007 | MR | Zbl

[8] Milne J., Etale cohomology, Princeton Math. Ser., 33, Princeton Univ. Press, Princeton, N.J., 1980 | MR | Zbl

[9] Panin I., Stavrova A., Vavilov N., “On Grothendieck–Serre's conjecture concerning principal $G$-bundles over reductive group schemes: I”, Compos. Math. (to appear)

[10] Panin I., Yagunov S., “Rigidity for orientable functors”, J. Pure Appl. Algebra, 172:1 (2002), 49–77 | DOI | MR | Zbl

[11] Quillen D., “Higher algebraic K-theory. I”, Lecture Notes in Math., 341, Springer, Berlin, 1973, 85–147 | DOI | MR

[12] Suslin A., “On the K-theory of algebraically closed fields”, Invent. Math., 73:2 (1983), 241–245 | DOI | MR | Zbl

[13] Röndings O., Østvær P., “Rigidity in motivic homotopy theory”, Math. Ann., 341:3 (2008), 651–675 | DOI | MR

[14] Suslin A., Voevodsky V., “Singular homology of abstract algebraic varieties”, Invent. Math., 123:1 (1996), 61–94 | DOI | MR | Zbl

[15] Yagunov S., “Rigidity. II. Non-orientable case”, Doc. Math., 9 (2004), 29–40 | MR | Zbl