Voir la notice de l'article provenant de la source Math-Net.Ru
@article{AA_2014_26_6_a3, author = {M. La Barbiera}, title = {Algebraic properties of bi-polymatroidal ideals}, journal = {Algebra i analiz}, pages = {69--77}, publisher = {mathdoc}, volume = {26}, number = {6}, year = {2014}, language = {en}, url = {http://geodesic.mathdoc.fr/item/AA_2014_26_6_a3/} }
M. La Barbiera. Algebraic properties of bi-polymatroidal ideals. Algebra i analiz, Tome 26 (2014) no. 6, pp. 69-77. http://geodesic.mathdoc.fr/item/AA_2014_26_6_a3/
[1] Bandari S., Herzog J., “Monomial localization and polymatroidal ideals”, Europian J. Combin., 34:4 (2013), 752–763 | DOI | MR | Zbl
[2] Conca A., Herzog J., “Castelnuovo–Mumford regularity of products of ideals”, Collect. Math., 54:2 (2003), 137–152 | MR | Zbl
[3] Herzog J., Hibi T., “Discrete polymatroids”, J. Algebraic Combin., 16:3 (2002), 239–268 | DOI | MR | Zbl
[4] Herzog J., Rauf A., Vladoiu M., “The stable set of associated prime ideals of a polymatroidal ideal”, J. Algebraic Combin., 37:2 (2013), 289–312 | DOI | MR | Zbl
[5] La Barbiera M., “Integral closure and normality of some classes of Veronese-type ideals”, Riv. Mat. Univ. Parma (7), 9 (2008), 31–47 | MR | Zbl
[6] La Barbiera M., “On a class of monomial ideals generated by $s$-sequences”, Math. Rep. (Bucur.), 12(62):3 (2010), 201–216 | MR | Zbl
[7] La Barbiera M., “On standard invariants of bi-polymatroidal ideals”, Algebra Colloq., 21:2 (2014), 267–274 | DOI | MR | Zbl
[8] La Barbiera M., “A note on unmixed ideals of Veronese bi-type”, Turkish J. Math., 37:1 (2013), 1–7 | MR | Zbl
[9] Sturmfels B., Gröebner bases and convex polytopes, Univ. Lecture Ser., 8, Amer. Math. Soc., Providence, RI, 1996 | MR | Zbl
[10] Villarreal R. H., Monomial algebras, Monogr. Textbooks Pure Appl. Math., 238, Marcel Dekker, Inc., New York, 2001 | MR | Zbl