Imbedding of circular orbits and the distribution of fractional parts
Algebra i analiz, Tome 26 (2014) no. 6, pp. 29-68.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{AA_2014_26_6_a2,
     author = {V. G. Zhuravlev},
     title = {Imbedding of circular orbits and the distribution of fractional parts},
     journal = {Algebra i analiz},
     pages = {29--68},
     publisher = {mathdoc},
     volume = {26},
     number = {6},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AA_2014_26_6_a2/}
}
TY  - JOUR
AU  - V. G. Zhuravlev
TI  - Imbedding of circular orbits and the distribution of fractional parts
JO  - Algebra i analiz
PY  - 2014
SP  - 29
EP  - 68
VL  - 26
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AA_2014_26_6_a2/
LA  - ru
ID  - AA_2014_26_6_a2
ER  - 
%0 Journal Article
%A V. G. Zhuravlev
%T Imbedding of circular orbits and the distribution of fractional parts
%J Algebra i analiz
%D 2014
%P 29-68
%V 26
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AA_2014_26_6_a2/
%G ru
%F AA_2014_26_6_a2
V. G. Zhuravlev. Imbedding of circular orbits and the distribution of fractional parts. Algebra i analiz, Tome 26 (2014) no. 6, pp. 29-68. http://geodesic.mathdoc.fr/item/AA_2014_26_6_a2/

[1] Brown T. C., Shiue P. J-S., “Sums of fractional parts of integer multiples of an irrational”, J. Number Theory, 50:2 (1995), 181–192 | DOI | MR | Zbl

[2] Hecke E., “Eber analytische Funktionen und die Verteilung von Zahlen mod. eins”, Abh. Math. Sem. Hamburg. Univ., 1 (1921), 54–76 | DOI | MR | Zbl

[3] Ostrowski A., “Bemerkungen zur Theorie der Diophantischen Approximationen”, Abh. Math. Sem. Hamburg, 1:1 (1922), 77–98 | DOI | MR

[4] Pinner C., “On sums of fractional parts $\{n\alpha+\gamma\}$”, J. Number Theory, 65:1 (1997), 48–73 | DOI | MR | Zbl

[5] Zeckendorf E., “Représentation des nombres naturels par une somme des nombres de Fibonacci ou de nombres de Lucas”, Bull. Soc. Roy. Sci. Liège, 41 (1972), 179–182 | MR | Zbl

[6] Abrosimova A. A., Zhuravlev V. G., “Dvumernoe obobschenie teoremy Gekke i sbalansirovannye slova”, Algebra i teoriya chisel: sovremennye problemy i prilozheniya, Tez. dokl., Izd-vo Sarat. un-ta, Saratov, 2011, 3–4

[7] Zhuravlev V. G., “Razbieniya Rozi i mnozhestva ogranichennogo ostatka”, Zap. nauch. semin. POMI, 322, 2005, 83–106 | MR | Zbl

[8] Zhuravlev V. G., “Odnomernye razbieniya Fibonachchi”, Izv. RAN. Ser. mat., 71:2 (2007), 89–122 | DOI | MR | Zbl

[9] Zhuravlev V. G., “Perekladyvayuschiesya toricheskie razvertki i mnozhestva ogranichennogo ostatka”, Zap. nauch. semin. POMI, 392, 2011, 95–145 | MR

[10] Zhuravlev V. G., “Mnogomernaya teorema Gekke o raspredelenii drobnykh chastei”, Algebra i analiz, 24:1 (2012), 95–130 | MR | Zbl

[11] Zhuravlev V. G., “Moduli toricheskikh razbienii na mnozhestva ogranichennogo ostatka i sbalansirovannye slova”, Algebra i analiz, 24:4 (2012), 97–136 | MR | Zbl

[12] Zhuravlev V. G., “Mnogogranniki ogranichennogo ostatka Matematika i informatika. 1”, Sovr. probl. mat., 16, Mat. in-t RAN, M., 2012, 82–102 | DOI | Zbl

[13] Krasilschikov V. V., Shutov A. V., Zhuravlev V. G., “Odnomernye kvaziperiodicheskie razbieniya, dopuskayuschie vlozhenie progressii”, Izv. vuzov. Mat., 2009, no. 7, 3–9 | MR | Zbl

[14] Manuilov N. N., “Chislo popadanii tochek posledovatelnosti $\{n\tau_g\}$ v poluinterval”, Chebyshevskii sb., 5:3 (2004), 72–81 | MR | Zbl

[15] Shutov A. V., “Optimalnye otsenki v probleme raspredeleniya drobnykh dolei $n\alpha$ na mnozhestvakh ogranichennogo ostatka”, Vestn. Samar. gos. un-ta. Estestv.-nauch. ser., 2007, no. 7(57), 168–175

[16] Shutov A. V., “Sistemy schisleniya i mnozhestva ogranichennogo ostatka”, Chebyshevskii sb., 7:3 (2006), 110–128 | MR | Zbl