The arithmetic of the Lubin--Tate formal module in a~multidimensional complete field
Algebra i analiz, Tome 26 (2014) no. 6, pp. 1-9.

Voir la notice de l'article provenant de la source Math-Net.Ru

This is the first part of the paper devoted to the derivation of an explicit formula for the Hilbert symbol in a complete multidimensional field. In the present paper, we construct primary elements and the Shafarevich basis for Lubin–Tate formal modules, which is the crucial point in the construction of explicit formulas.
Keywords: Shafarevich generalized basis, formal group law, formal $C$-module, discrete valuation field, unramified extension.
@article{AA_2014_26_6_a0,
     author = {B. M. Bekker and S. V. Vostokov},
     title = {The arithmetic of the {Lubin--Tate} formal module in a~multidimensional complete field},
     journal = {Algebra i analiz},
     pages = {1--9},
     publisher = {mathdoc},
     volume = {26},
     number = {6},
     year = {2014},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/AA_2014_26_6_a0/}
}
TY  - JOUR
AU  - B. M. Bekker
AU  - S. V. Vostokov
TI  - The arithmetic of the Lubin--Tate formal module in a~multidimensional complete field
JO  - Algebra i analiz
PY  - 2014
SP  - 1
EP  - 9
VL  - 26
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AA_2014_26_6_a0/
LA  - en
ID  - AA_2014_26_6_a0
ER  - 
%0 Journal Article
%A B. M. Bekker
%A S. V. Vostokov
%T The arithmetic of the Lubin--Tate formal module in a~multidimensional complete field
%J Algebra i analiz
%D 2014
%P 1-9
%V 26
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AA_2014_26_6_a0/
%G en
%F AA_2014_26_6_a0
B. M. Bekker; S. V. Vostokov. The arithmetic of the Lubin--Tate formal module in a~multidimensional complete field. Algebra i analiz, Tome 26 (2014) no. 6, pp. 1-9. http://geodesic.mathdoc.fr/item/AA_2014_26_6_a0/

[1] Vostokov S. V., “Normennoe sparivanie v formulnykh modulyakh”, Izv. AN SSSR. Ser. mat., 43:4 (1979), 765–794 | MR | Zbl

[2] Vostokov S. V., “K rabote I. R. Shafarevicha ‘Obschii zakon vzaimnosti’ ”, Mat. sb., 204:6 (2013), 3–22 | DOI | MR | Zbl

[3] Vostokov S. V., “Yavnaya forma zakona vzaimnosti”, Izv. AN SSSR. Ser. mat., 42:6 (1978), 1288–1321 | MR | Zbl

[4] Hazewinkel M., Formal groups and applications, Pure Appl. Math., 78, Acad. Press, Inc., New York–London, 1978 | MR | Zbl

[5] Kolyvagin V. A., “Formalnye gruppy i simvol normennogo vycheta”, Izv. AN SSSR. Ser. mat., 43:5 (1979), 1054–1120 | MR | Zbl

[6] Hensel K., “Die multiplikative Darstellung der algebraischen Zahlen für den Bereichenes beliebigen Primzahlen”, J. Reine Angew. Math., 136 (1916), 174–183

[7] Shafarevich I. R., “Obschii zakon vzaimnosti”, Mat. sb., 26(68):1 (1950), 113–146 | MR | Zbl