Approximate commutation of a~decaying potential and a~function of elliptic operator
Algebra i analiz, Tome 26 (2014) no. 5, pp. 215-227.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{AA_2014_26_5_a7,
     author = {V. A. Sloushch},
     title = {Approximate commutation of a~decaying potential and a~function of elliptic operator},
     journal = {Algebra i analiz},
     pages = {215--227},
     publisher = {mathdoc},
     volume = {26},
     number = {5},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AA_2014_26_5_a7/}
}
TY  - JOUR
AU  - V. A. Sloushch
TI  - Approximate commutation of a~decaying potential and a~function of elliptic operator
JO  - Algebra i analiz
PY  - 2014
SP  - 215
EP  - 227
VL  - 26
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AA_2014_26_5_a7/
LA  - ru
ID  - AA_2014_26_5_a7
ER  - 
%0 Journal Article
%A V. A. Sloushch
%T Approximate commutation of a~decaying potential and a~function of elliptic operator
%J Algebra i analiz
%D 2014
%P 215-227
%V 26
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AA_2014_26_5_a7/
%G ru
%F AA_2014_26_5_a7
V. A. Sloushch. Approximate commutation of a~decaying potential and a~function of elliptic operator. Algebra i analiz, Tome 26 (2014) no. 5, pp. 215-227. http://geodesic.mathdoc.fr/item/AA_2014_26_5_a7/

[1] Slousch V. A., “Otsenka tipa Tsvikelya kak sledstvie nekotorykh svoistv teplovogo yadra”, Algebra i analiz, 25:5 (2013), 173–201 | MR

[2] Alama S., Deift P. A., Hempel R., “Eigenvalue branches of the Schrödinger operator $H-\lambda W$ in a gap of $\sigma(H)$”, Commun. Math. Phys., 121:2 (1989), 291–321 | DOI | MR | Zbl

[3] Pushnitskii P. A., Ruzhanskii M. V., “Funktsiya spektralnogo sdviga operatora Shrëdingera v predele bolshoi konstanty svyazi”, Funkts. anal. i ego pril., 36:3 (2002), 93–95 | DOI | MR | Zbl

[4] Birman M. Sh., Sloushch V. A., “Discrete spectrum of the periodic Schrödinger operator with a variable metric perturbed by a nonnegative potential”, Math. Model. Nat. Phenom., 5:4 (2010), 32–53 | DOI | MR | Zbl

[5] Birman M. Sh., Solomyak M. Z., “Asimptotika spektra psevdodifferentsialnykh operatorov s anizotropno odnorodnymi simvolami. II”, Vestn. Leningr. un-ta. Ser. mat., mekh., astronom., 1979, no. 3, 5–10 | MR | Zbl

[6] Aronson D. G., “Bounds for the fundamental solution of a parabolic equation”, Bull. Amer. Math. Soc., 73 (1967), 890–896 | DOI | MR | Zbl

[7] Davies E. B., Heat kernels and spectral theory, Cambridge Tracts in Math., 92, Cambridge Univ. Press, Cambridge, 1989 | MR | Zbl

[8] Birman M. Sh., Solomyak M. Z., “Otsenki singulyarnykh chisel integralnykh operatorov”, Uspekhi mat. nauk, 32:1 (1977), 17–84 | MR | Zbl

[9] Birman M. Sh., Karadzhov G. E., Solomyak M. Z., “Boundedness conditions and spectrum estimates for the operators $b(X)a(D)$ and their analogs”, Estimates and Asymptotics for Discrete Spectra of Integral and Differential Equations (Leningrad, 1989–90), Adv. Soviet Math., 7, Amer. Math. Soc., Providence, RI, 1991, 85–106 | MR

[10] Birman M. Sh., Solomyak M. Z., “Kompaktnye operatory so stepennoi asimptotikoi singulyarnykh chisel”, Zap. nauch. semin. LOMI, 126, 1983, 21–30 | MR | Zbl

[11] Birman M. Sh., Solomyak M. Z., Spektralnaya teoriya samosopryazhennykh operatorov v gilbertovom prostranstve, Ucheb. posobie, 2-e izd., ispr. i dop., Lan, SPb., 2010

[12] Slousch V. A., “Nekotorye obobscheniya otsenki Tsvikelya dlya integralnykh operatorov”, Tr. S.-Peterburg. mat. o-va, 14, 2008, 169–196