Voir la notice de l'article provenant de la source Math-Net.Ru
@article{AA_2014_26_5_a5, author = {D. V. Korikov}, title = {Asymptotic behavior of solutions to wave equation in domain with a~small hole}, journal = {Algebra i analiz}, pages = {164--199}, publisher = {mathdoc}, volume = {26}, number = {5}, year = {2014}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/AA_2014_26_5_a5/} }
D. V. Korikov. Asymptotic behavior of solutions to wave equation in domain with a~small hole. Algebra i analiz, Tome 26 (2014) no. 5, pp. 164-199. http://geodesic.mathdoc.fr/item/AA_2014_26_5_a5/
[1] Maz'ya V. G., Nazarov S. A., Plamenevskii B. A., Asymptotic theory of elliptic boundary value problems in singularly perturbed domains, v. 1, Oper. Theory Adv. Appl., 112, Birkhäuser, Basel, 2000 | MR | Zbl
[2] Agranovich M. S., Vishik M. I., “Ellipticheskie zadachi s parametrom i parabolicheskie zadachi obschego vida”, Uspekhi mat. nauk, 19:3 (1964), 53–161 | MR | Zbl
[3] Plamenevskii B. A., “O zadache Dirikhle dlya volnovogo uravneniya v tsilindre s rebrami”, Algebra i analiz, 10:2 (1998), 197–228 | MR | Zbl
[4] Kokotov A. Yu., Plamenevskii B. A., “Ob asimptotike reshenii zadachi Neimana dlya giperbolicheskikh sistem v oblastyakh s konicheskimi tochkami”, Algebra i analiz, 16:3 (2004), 56–98 | MR | Zbl
[5] Matyukevich S. I., Plamenevskii B. A., “O dinamicheskikh zadachakh teorii uprugosti v oblastyakh s rebrami”, Algebra i analiz, 18:3 (2006), 158–233 | MR | Zbl
[6] Ilin A. M., “Ob odnoi kraevoi zadache s malym parametrom”, Uspekhi mat. nauk, 32:3 (1977), 161–162 | MR | Zbl
[7] Khardi G. G., Littlvud Dzh. E., Polia G., Neravenstva, IL, M., 1948
[8] Nazarov S. A., Plamenevskii B. A., Ellipticheskie zadachi v oblastyakh s kusochno-gladkoi granitsei, Nauka, M., 1991
[9] Mazya V. G., Plamenevskii B. A., “Otsenki v $L_p$ i v klassakh Gëldera i printsip maksimuma Miranda–Agmona dlya reshenii ellipticheskikh kraevykh zadach v oblastyakh s osobymi tochkami na granitse”, Math. Nachr., 81 (1978), 25–82 | DOI | Zbl