Asymptotic behavior of solutions to wave equation in domain with a~small hole
Algebra i analiz, Tome 26 (2014) no. 5, pp. 164-199.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{AA_2014_26_5_a5,
     author = {D. V. Korikov},
     title = {Asymptotic behavior of solutions to wave equation in domain with a~small hole},
     journal = {Algebra i analiz},
     pages = {164--199},
     publisher = {mathdoc},
     volume = {26},
     number = {5},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AA_2014_26_5_a5/}
}
TY  - JOUR
AU  - D. V. Korikov
TI  - Asymptotic behavior of solutions to wave equation in domain with a~small hole
JO  - Algebra i analiz
PY  - 2014
SP  - 164
EP  - 199
VL  - 26
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AA_2014_26_5_a5/
LA  - ru
ID  - AA_2014_26_5_a5
ER  - 
%0 Journal Article
%A D. V. Korikov
%T Asymptotic behavior of solutions to wave equation in domain with a~small hole
%J Algebra i analiz
%D 2014
%P 164-199
%V 26
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AA_2014_26_5_a5/
%G ru
%F AA_2014_26_5_a5
D. V. Korikov. Asymptotic behavior of solutions to wave equation in domain with a~small hole. Algebra i analiz, Tome 26 (2014) no. 5, pp. 164-199. http://geodesic.mathdoc.fr/item/AA_2014_26_5_a5/

[1] Maz'ya V. G., Nazarov S. A., Plamenevskii B. A., Asymptotic theory of elliptic boundary value problems in singularly perturbed domains, v. 1, Oper. Theory Adv. Appl., 112, Birkhäuser, Basel, 2000 | MR | Zbl

[2] Agranovich M. S., Vishik M. I., “Ellipticheskie zadachi s parametrom i parabolicheskie zadachi obschego vida”, Uspekhi mat. nauk, 19:3 (1964), 53–161 | MR | Zbl

[3] Plamenevskii B. A., “O zadache Dirikhle dlya volnovogo uravneniya v tsilindre s rebrami”, Algebra i analiz, 10:2 (1998), 197–228 | MR | Zbl

[4] Kokotov A. Yu., Plamenevskii B. A., “Ob asimptotike reshenii zadachi Neimana dlya giperbolicheskikh sistem v oblastyakh s konicheskimi tochkami”, Algebra i analiz, 16:3 (2004), 56–98 | MR | Zbl

[5] Matyukevich S. I., Plamenevskii B. A., “O dinamicheskikh zadachakh teorii uprugosti v oblastyakh s rebrami”, Algebra i analiz, 18:3 (2006), 158–233 | MR | Zbl

[6] Ilin A. M., “Ob odnoi kraevoi zadache s malym parametrom”, Uspekhi mat. nauk, 32:3 (1977), 161–162 | MR | Zbl

[7] Khardi G. G., Littlvud Dzh. E., Polia G., Neravenstva, IL, M., 1948

[8] Nazarov S. A., Plamenevskii B. A., Ellipticheskie zadachi v oblastyakh s kusochno-gladkoi granitsei, Nauka, M., 1991

[9] Mazya V. G., Plamenevskii B. A., “Otsenki v $L_p$ i v klassakh Gëldera i printsip maksimuma Miranda–Agmona dlya reshenii ellipticheskikh kraevykh zadach v oblastyakh s osobymi tochkami na granitse”, Math. Nachr., 81 (1978), 25–82 | DOI | Zbl