Voir la notice de l'article provenant de la source Math-Net.Ru
@article{AA_2014_26_5_a0, author = {L. Xiao and I. Zhukov}, title = {Ramification of higher local fields, approaches and questions}, journal = {Algebra i analiz}, pages = {1--63}, publisher = {mathdoc}, volume = {26}, number = {5}, year = {2014}, language = {en}, url = {http://geodesic.mathdoc.fr/item/AA_2014_26_5_a0/} }
L. Xiao; I. Zhukov. Ramification of higher local fields, approaches and questions. Algebra i analiz, Tome 26 (2014) no. 5, pp. 1-63. http://geodesic.mathdoc.fr/item/AA_2014_26_5_a0/
[1] Abbes A., Mokrane A., “Sous-groupes canoniques et cycles évanescents $p$-adiques pour les variétés abéliennes”, Publ. Math. Inst. Hautes Etudes Sci., 99 (2004), 117–162 | DOI | MR | Zbl
[2] Abbes A., Saito T., “Ramification of local fields with imperfect residue fields. I,”, Amer. J. Math., 124:5 (2002), 879–920 ; arXiv: math/0010103 | DOI | MR | Zbl
[3] Abbes A., Saito T., “Ramification of local fields with imperfect residue fields. II,”, Kazuya Kato's fiftieth birthday, Doc. Math., Extra Vol., 2003, 5–72, (electronic) | MR | Zbl
[4] Abbes A., Saito T., “Analyse micro-locale $l$-adique en caracteristique $p>0$: Le cas d'un trait”, Publ. Res. Inst. Math. Sci., 45:1 (2009), 25–74 | DOI | MR | Zbl
[5] Abbes A., Saito T., “Ramification and cleanliness”, Tohoku Math. J. (2), 63:4 (2011), 775–853 | DOI | MR | Zbl
[6] Abrashkin V. A., “On a local analogue of the Grothendieck conjecture”, Internat. J. Math., 11:2 (2000), 133–175 | DOI | MR | Zbl
[7] Abrashkin V. A., “Ramification theory for higher dimensional local fields”, Algebraic Number Theory and Algebraic Geometry, Contemp. Math., 300, Amer. Math. Soc., Providence, RI, 2002, 1–16 | DOI | MR | Zbl
[8] Abrashkin V. A., “Analog gipotezy Grotendika dlya $2$-mernykh lokalnykh polei konechnoi kharakteristiki”, Tr. Mat. in-ta RAN, 241, 2003, 8–42 | MR | Zbl
[9] Abrashkin V. A., “An analogue of the field-of-norms functor and of the Grothendieck conjecture”, J. Algebraic Geom., 16:4 (2007), 671–730 ; arXiv: math/0503200 | DOI | MR | Zbl
[10] Abrashkin V. A., “Modified proof of a local analogue of the Grothendieck conjecture”, J. Théor. Nombres Bordeaux, 22:1 (2010), 1–50 ; arXiv: 0907.3035 | DOI | MR | Zbl
[11] Barrientos I., Log ramification via curves in rank 1, Preprint, 2013, arXiv: 1307.5814
[12] Berthelot P., “Introduction à la théorie arithmétique des . II $D$-modules”, Astérisque, 279 (2002), 1–80 | MR | Zbl
[13] Boltje R., Cram G.-M., Snaith V. P., “Conductors in the non-separable residue field case”, Algebraic $K$-theory and Algebraic Topology (Lake Louise, AB, 1991), NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci., 407, Kluwer Acad. Publ., Dordrecht, 1993, 1–34 | MR | Zbl
[14] Bosch S., Güntzer U., Remmert R., Non-Archimedean analysis: a systematic approach to rigid analytic geometry, Grundlehren Math. Wiss., 261, Springer-Verlag, Berlin, 1984 | DOI | MR | Zbl
[15] Boubakri Y., Greuel G.-M., Markwig T., “Invariants of hypersurface singularities in positive characteristic”, Rev. Mat. Complut., 25:1 (2012), 61–85 ; arXiv: 1005.4503 | DOI | MR | Zbl
[16] Borger J. M., Kato's conductor and generic residual perfection, Preprint, 2002, arXiv: math/0112306
[17] Borger J. M., “Conductors and the moduli of residual perfection”, Math. Ann., 329:1 (2004), 1–30 ; arXiv: math/0112305 | DOI | MR | Zbl
[18] Brylinski J.-L., “Théorie du corps de classes de Kato et revêtements abéliens de surfaces”, Ann. Inst. Fourier (Grenoble), 33:3 (1983), 23–38 | DOI | MR | Zbl
[19] Chiarellotto B., Pulita A., “Arithmetic and differential Swan conductors of rank one representations with finite local monodromy”, Amer. J. Math., 131:6 (2009), 1743–1794 | DOI | MR | Zbl
[20] Cutkosky S. D., Piltant O., “Ramification of valuations”, Adv. Math., 183:1 (2004), 1–79 | DOI | MR | Zbl
[21] Campillo A., Zhukov I. B., Curve singularities and ramification of surface morphisms (to appear)
[22] Deligne P., Letter to L. Illusie of 28.11.76, (unpublished)
[23] Deligne P., “Les corps locaux de caractéristique $p$, limites de corps locaux de caractéristique $0$”, Representations of Reductive Groups over a Local Field, Travaux en Cours, Hermann, Paris, 1984, 119–157 | MR
[24] de Smit B., “Ramification groups of local fields with imperfect residue class field”, J. Number Theory, 44:3 (1993), 229–236 | DOI | MR | Zbl
[25] Epp H., “Eliminating wild ramification”, Invent. Math., 19 (1973), 235–249 | DOI | MR | Zbl
[26] Esnault H., Kerz M., A finiteness theorem for Galois representations of function fields over finite fields (after Deligne), Preprint, 2012, arXiv: 1208.0128 | MR
[27] Faizov I. N., “Skachok vetvleniya v modelnykh rasshireniyakh stepeni $p$”, Zap. nauch. semin. POMI, 413, 2013, 183–218 | MR
[28] Fesenko I. B., “Abelian local $p$-class field theory”, Math. Ann., 301:3 (1995), 561–586 | DOI | MR | Zbl
[29] Fesenko I. B., “Hasse–Arf property and abelian extensions”, Math. Nachr., 174 (1995), 81–87 | DOI | MR | Zbl
[30] Fesenko I. B., “Abelian extensions of complete discrete valuation fields”, Number Theory (Paris, 1993–1994), London Math. Soc. Lecture Note Ser., 235, Cambridge Univ. Press, Cambridge, 1996, 47–74 | MR | Zbl
[31] Fesenko I. B., “Nonabelian local reciprocity maps”, Class Field Theory its Centenary and Prospect (Tokyo, 1998), Adv. Stud. Pure Math., 30, Math. Soc. Japan, Tokyo, 2001, 63–78 | MR | Zbl
[32] Fesenko I. B., “Analysis on arithmetic schemes. II”, J. K-Theory, 5:3 (2010), 437–557 | DOI | MR | Zbl
[33] Fesenko I. B., Vostokov S. V., Local fields and their extensions. A constructive approach, 2nd ed., Amer. Math. Soc., Providence, RI, 2002 | MR | Zbl
[34] Fontaine J.-M., Wintenberger J.-P., “Extensions algébrique et corps des normes des extensions APF des corps locaux”, C. R. Acad. Sci. Paris Sér. A–B, 288:8 (1979), A441–A444 | MR
[35] Fontaine J.-M., Wintenberger J.-P., “Le “corps des normes” de certaines extensions algébriques de corps locaux”, C. R. Acad. Sci. Paris Sér. A–B, 288:6 (1979), A367–A370 | MR
[36] Hattori S., “Ramification correspondence of finite flat group schemes over equal and mixed characteristic local fields”, J. Number Theory, 132:10 (2012), 2084–2102 | DOI | MR | Zbl
[37] Hattori S., “On lower ramification subgroups and canonical subgroups”, Algebra and Number Theory, 8:2 (2014), 303–330 ; arXiv: 1208.5326 | MR
[38] Invitation to higher local fields (Münster, 1999), Geometry and Topology Monographs, 3, Geom. Topol. Publ., Coventry, 2000 http://www.emis.de/journals/GT/ftp/main/m3/m3-hlf.pdf
[39] Hiranouchi T., “Ramification of truncated discrete valuation rings: a survey”, RIMS Kôkyûroku Bessatsu, B19, Res. Inst. Math. Sci. (RIMS), Kyoto, 2010, 35–43 | MR
[40] Hiranouchi T., Taguchi Y., “Extensions of truncated discrete valuation rings”, Pure Appl. Math. Q., 4:4 (2008), 1205–1214 | DOI | MR | Zbl
[41] Hotta R., Takeuchi K., Tanisaki T., $D$-modules, perverse sheaves, and representation theory, Progr. Math., 236, Birkhäuser, Boston, MA, 2008 | DOI | MR | Zbl
[42] Hyodo K., “Wild ramification in the imperfect residue field case”, Adv. Stud. Pure Math., 12 (1987), 287–314 | MR | Zbl
[43] Ivanova O. Yu., “Rang topologicheskoi $K$-gruppy kak $\mathbb Z_p$-modulya”, Algebra i analiz, 20:4 (2008), 87–117 | MR | Zbl
[44] Ivanova O. Yu., “O vyazi klassifikatsii Kurikhary s teoriei ustraneniya vetvleniya”, Algebra i analiz, 24:2 (2012), 130–153 | MR | Zbl
[45] Ivanova O. Yu., “Klassifikatsiya Kurikhary i rasshireniya maksimalnoi glubiny dlya mnogomernykh lokalnykh polei”, Algebra i analiz, 24:6 (2012), 42–76 | MR
[46] Ikeda K. I., Serbest E., “Ramification theory in non-abelian local class field theory”, Acta Arith., 144:4 (2010), 373–393 | DOI | MR | Zbl
[47] Kato K., “Vanishing cycles, ramification of valuation and class field theory”, Duke Math. J., 55:3 (1987), 629–659 | DOI | MR | Zbl
[48] Kato K., “Swan conductors for characters of degree one in the imperfect residue field case”, Algebraic $K$-theory and Algebraic Number Theory (Honolulu, HI, 1987), Contemp. Math., 83, Amer. Math. Soc., Providence, RI, 1989, 101–131 | DOI | MR
[49] Kato K., “Class field theory, $\mathcal D$-modules, and ramification on higher-dimensional schemes. I”, Amer. J. Math., 116:4 (1994), 757–784 | DOI | MR | Zbl
[50] Kato K., Saito T., “Ramification theory for varieties over a perfect field”, Ann. of Math. (2), 168:1 (2008), 33–96 | DOI | MR | Zbl
[51] Kato K., Saito T., “Ramification theory for varieties over a local field”, Publ. Math. Inst. Hautes Études Sci., 117 (2013), 1–178 ; arXiv: 1007.0310 | DOI | MR | Zbl
[52] Katz N. M., Exponential sums and differential equations, Ann. of Math. Stud., 124, Princeton Univ. Press, Princeton, NJ, 1990 | MR | Zbl
[53] Kedlaya K. S., “Local monodromy of $p$-adic differential equations: an overview”, Internat. J. Number Theory, 1:1 (2005), 109–154 | DOI | MR | Zbl
[54] Kedlaya K. S., “Fourier transforms and $p$-adic ‘Weil II’ ”, Compos. Math., 142:6 (2006), 1426–1450 | DOI | MR | Zbl
[55] Kedlaya K. S., “Swan conductors for $p$-adic differential modules. I, A local construction”, Algebra Number Theory, 1:3 (2007), 269–300 | DOI | MR | Zbl
[56] Kedlaya K. S., $p$-adic differential equations, Cambridge Stud. Adv. Math., 125, Cambridge Univ. Press, 2010 | MR | Zbl
[57] Kedlaya K. S., “Good formal structures for flat meromorphic connections. I, Surfaces”, Duke Math. J., 154:2 (2010), 343–418 | DOI | MR | Zbl
[58] Kedlaya K. S., “Swan conductors for $p$-adic differential modules. II, Global variation”, J. Inst. Math. Jussieu, 10:1 (2011), 191–224 | DOI | MR | Zbl
[59] Kedlaya K. S., “Good formal structures for flat meromorphic connections. II, Excellent schemes”, J. Amer. Math. Soc., 24:1 (2011), 183–229 | DOI | MR | Zbl
[60] Kedlaya K. S., Xiao L., “Differential modules on $p$-adic polyannuli”, J. Inst. Math. Jussieu, 9:1 (2010), 155–201 ; arXiv: 0804.1495 | DOI | MR | Zbl
[61] Köck B., “Computing the equivariant Euler characteristic of Zariski and étale sheaves on curves”, Homology, Homotopy Appl., 7:3 (2005), 83–98 | DOI | MR | Zbl
[62] Kuhlmann F.-V., “A correction to: “Elimination of wild ramification” by H. P. Epp”, Invent. Math., 153:3 (2003), 679–681 | DOI | MR | Zbl
[63] Kurihara M., “On two types of complete discrete valuation fields”, Compos. Math., 63:2 (1987), 237–257 | MR | Zbl
[64] Koroteev M. V., Zhukov I. B., “Ustranenie dikogo vetvleniya”, Algebra i analiz, 11:6 (1999), 153–177 | MR | Zbl
[65] Laumon G., “Semi-continuité du conducteur de Swan (d'après P. Deligne)”, Astérisque, 83 (1981), 173–219 | MR | Zbl
[66] Lomadze V. G., “K teorii vetvleniya dvumernykh lokalnykh polei”, Mat. sb., 109:3 (1979), 378–394 | MR | Zbl
[67] Melle-Hernández A., Wall C. T. C., “Pencils of curves on smooth surfaces”, Proc. London Math. Soc. (3), 83:2 (2001), 257–278 | DOI | MR | Zbl
[68] Miki H., “On $\mathbb Z_p$-extensions of complete $p$-adic power series fields and function fields”, J. Fac. Sci. Univ. Tokyo Sect. 1A, 21 (1974), 377–393 | MR | Zbl
[69] Miki H., “On the ramification numbers of cyclic $p$-extensions over local fields”, J. Reine Angew. Math., 328 (1981), 99–115 | DOI | MR | Zbl
[70] Milne J., Étale cohomology, Princeton Math. Ser., 33, Princeton Univ. Press, Princeton, 1980 | MR | Zbl
[71] Mochizuki Sh., “A version of the Grothendieck conjecture for $p$-adic local fields”, Internat. J. Math., 8:4 (1997), 499–506 | DOI | MR | Zbl
[72] Mochizuki T., Wild harmonic bundles and wild pure twistor $D$-modules, Astérisque, 340, 2011 | MR | Zbl
[73] Ponomarev K. N., “Razreshimoe ustranenie vetvleniya v rasshireniyakh diskretno normirovannykh polei”, Algebra i logika, 37:1 (1998), 63–87 | MR | Zbl
[74] Pak G. K., Vostokov S. V., Zhukov I. B., “Rasshireniya s pochti maksimalnoi glubinoi vetvleniya”, Zap. nauch. semin. POMI, 265, 1999, 77–109 | MR | Zbl
[75] Saito T., “Wild ramification and the characteristic cycle of an $l$-adic sheaf”, J. Inst. Math. Jussieu, 8:4 (2009), 769–829 ; arXiv: 0705.2799 | DOI | MR | Zbl
[76] Saito T., “Wild ramification of schemes and sheaves”, Proc. Internat. Congress of Mathematicians (ICM 2010), Invited lectures, v. II, World Sci., Hackensack, NJ, 2011, 335–356 | MR | Zbl
[77] Saito T., “Ramification of local fields with imperfect residue fields. III”, Math. Ann., 352:3 (2012), 567–580 ; arXiv: 1005.2824 | DOI | MR | Zbl
[78] Scholl A. J., “Higher fields of norms and $(\phi,\Gamma)$-modules”, Doc. Math., 2006, Extra Vol., 685–709, (electronic) | MR
[79] Serre J.-P., Corps locaux, 2nd ed., Hermann, Paris, 1968 | MR
[80] Serre J.-P., Linear representations of finite groups, Grad. Texts in Math., 42, Springer-Verlag, New York–Heidelberg, 1977 | DOI | MR | Zbl
[81] Snaith V. P., Explicit Brauer induction, Cambridge Stud. Adv. Math., 40, Cambridge Univ. Press, Cambridge, 1994 | MR | Zbl
[82] Spriano L., Well and fiercely ramified extensions of complete discrete valuation fields, with applications to the Kato conductor, Thèse à l'Université Bordeaux I, 1999 | MR
[83] Spriano L., “Well ramified extensions of complete discrete valuation fields with applications to the Kato conductor”, Canad. J. Math., 52:6 (2000), 1269–1309 | DOI | MR | Zbl
[84] Thomas L., “Ramification groups in Artin–Schreier–Witt extensions”, J. Théor. Nombres Bordeaux, 17:2 (2005), 689–720 | DOI | MR | Zbl
[85] Tian Y., “Canonical subgroups of Barsotti–Tate groups”, Ann. of Math. (2), 172:2 (2010), 955–988 | DOI | MR | Zbl
[86] Vostokov S. V., Zhukov I. B., “Nekotorye podkhody k postroeniyu abelevykh rasshirenii dlya $\mathfrak p$-adicheskikh polei”, Tr. S.-Peterburg. mat. o-va, 3, 1994, 157–174 | MR
[87] Wewers S., Fiercely ramified cyclic extensions of $p$-adic fields with imperfect residue field, Preprint, 2011, arXiv: 1104.3785 | MR
[88] Whitney W. A., Functorial cohen rings, PhD thesis, Univ. California, Berkeley, 2002 | MR
[89] Xiao L., “On ramification filtrations and $p$-adic differential equations. I, Equal characteristic case”, Algebra Number Theory, 4:8 (2010), 969–1027 ; arXiv: 0801.4962 | DOI | MR | Zbl
[90] Xiao L., “On Ramification Filtrations and $p$-adic Differential Equations. II, Mixed characteristic case”, Compos. Math., 148:2 (2012), 415–463 ; arXiv: 0811.3792 | DOI | MR | Zbl
[91] Xiao L., “On refined ramification filtrations in the equal characteristic case”, Algebra Number Theory, 6:8 (2012), 1579–1667 ; arXiv: 0911.1802 | DOI | MR | Zbl
[92] Xiao L., “Cleanness and log-characteristic cycles, I: vector bundles with flat connections”, Math. Ann. (to appear)
[93] Zhukov I. B., “Strukturnaya teorema dlya polnykh polei”, Tr. S.-Peterburg. mat. o-va, 3, 1994, 175–192 | MR
[94] Zhukov I. B., “Milnorovskie i topologicheskie $K$-gruppy mnogomernykh polnykh polei”, Algebra i analiz, 9:1 (1997), 98–147 | MR | Zbl
[95] Zhukov I. B., “Ramification of surfaces: Artin–Schreier extensions”, Algebraic Number Theory and Algebraic Geometry, Contemp. Math., 300, Amer. Math. Soc., Providence, RI, 2002, 211–220 | DOI | MR | Zbl
[96] Zhukov I. B., Ramification of surfaces: sufficient jet order for wild jumps, Preprint, 2002, arXiv: math/0201071
[97] Zhukov I. B., “O teorii vetvleniya v sluchae nesovershennogo polya vychetov”, Mat. sb., 194:12 (2003), 3–30 | DOI | MR | Zbl
[98] Zhukov I. B., “Osobennosti dug i tsiklicheskie nakrytiya poverkhnostei”, Tr. S.-Peterburg. mat. o-va, 11, 2004, 49–66
[99] Zhukov I. B., “Poluglobalnye modeli rasshirenii dvumernykh lokalnykh polei”, Vestn. S.-Peterburg. un-ta. Ser. 1, 2010, no. 1, 39–45
[100] Zhukov I. B., “Vetvlenie elementarno abelevykh rasshirenii”, Zap. nauch. semin. POMI, 413, 2013, 106–114 | MR
[101] Zhukov I. B., “Elementarno abelev konduktor”, Zap. nauch. semin. POMI, 423, 2014, 126–131