Homogenization of elliptic systems with periodic coefficients: operator error estimates in~$L_2(\mathbb R^d)$ with corrector taken into account
Algebra i analiz, Tome 26 (2014) no. 4, pp. 195-263.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{AA_2014_26_4_a5,
     author = {T. A. Suslina},
     title = {Homogenization of elliptic systems with periodic coefficients: operator error estimates in~$L_2(\mathbb R^d)$ with corrector taken into account},
     journal = {Algebra i analiz},
     pages = {195--263},
     publisher = {mathdoc},
     volume = {26},
     number = {4},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AA_2014_26_4_a5/}
}
TY  - JOUR
AU  - T. A. Suslina
TI  - Homogenization of elliptic systems with periodic coefficients: operator error estimates in~$L_2(\mathbb R^d)$ with corrector taken into account
JO  - Algebra i analiz
PY  - 2014
SP  - 195
EP  - 263
VL  - 26
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AA_2014_26_4_a5/
LA  - ru
ID  - AA_2014_26_4_a5
ER  - 
%0 Journal Article
%A T. A. Suslina
%T Homogenization of elliptic systems with periodic coefficients: operator error estimates in~$L_2(\mathbb R^d)$ with corrector taken into account
%J Algebra i analiz
%D 2014
%P 195-263
%V 26
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AA_2014_26_4_a5/
%G ru
%F AA_2014_26_4_a5
T. A. Suslina. Homogenization of elliptic systems with periodic coefficients: operator error estimates in~$L_2(\mathbb R^d)$ with corrector taken into account. Algebra i analiz, Tome 26 (2014) no. 4, pp. 195-263. http://geodesic.mathdoc.fr/item/AA_2014_26_4_a5/

[1] Bakhvalov N. S., Panasenko G. P., Osrednenie protsessov v periodicheskikh sredakh, Nauka, M., 1984 | MR | Zbl

[2] Bensoussan A., Lions J.-L., Papanicolaou G., Asymptotic analysis for periodic structures, Stud. Math. Appl., 5, North-Holland Publ. Co., Amsterdam–New York, 1978 | MR | Zbl

[3] Birman M. Sh., Suslina T. A., “Periodicheskie differentsialnye operatory vtorogo poryadka. Porogovye svoistva i usredneniya”, Algebra i analiz, 15:5 (2003), 1–108 | MR | Zbl

[4] Birman M. Sh., Suslina T. A., “Porogovye approksimatsii rezolventy faktorizovannogo operatornogo semeistva s uchetom korrektora”, Algebra i analiz, 17:5 (2005), 69–90 | MR | Zbl

[5] Birman M. Sh., Suslina T. A., “Usrednenie periodicheskikh ellipticheskikh differentsialnykh operatorov s uchetom korrektora”, Algebra i analiz, 17:6 (2005), 1–104 | MR | Zbl

[6] Birman M. Sh., Suslina T. A., “Usrednenie periodicheskikh differentsialnykh operatorov s uchetom korrektora. Approksimatsiya reshenii v klasse Soboleva $H^1(\mathbb R^d)$”, Algebra i analiz, 18:6 (2006), 1–130 | MR | Zbl

[7] Borisov D. I., “Asimptotiki reshenii ellipticheskikh sistem s bystro ostsilliruyuschimi koeffitsientami”, Algebra i analiz, 20:2 (2008), 19–42 | MR | Zbl

[8] Zhikov V. V., “O nekotorykh otsenkakh iz teorii usredneniya”, Dokl. RAN, 406:5 (2006), 597–601 | MR | Zbl

[9] Zhikov V. V., Kozlov S. M., Oleinik O. A., Usrednenie differentsialnykh operatorov, Nauka, M., 1993 | MR

[10] Zhikov V. V., Pastukhova S. E., “On operator estimates for some problems in homogenization theory”, Russ. J. Math. Phys., 12:4 (2005), 515–524 | MR | Zbl

[11] Ladyzhenskaya O. A., Uraltseva N. N., Lineinye i kvazilineinye uravneniya ellipticheskogo tipa, Nauka, M., 1964 | MR

[12] Suslina T. A., “Homogenization of periodic second order differential operators including first order terms”, Amer. Math. Soc. Transl. (2), 225, Amer. Math. Soc., Providence, RI, 2008, 227–252 | MR | Zbl

[13] Suslina T. A., “Usrednenie v klasse Soboleva $H^1(\mathbb R^d)$ dlya periodicheskikh ellipticheskikh differentsialnykh operatorov vtorogo poryadka pri vklyuchenii chlenov pervogo poryadka”, Algebra i analiz, 22:1 (2010), 108–222 | MR | Zbl

[14] Suslina T. A., “Approksimatsiya rezolventy dvuparametricheskogo kvadratichnogo operatornogo puchka vblizi nizhnego kraya spektra”, Algebra i analiz, 25:5 (2013), 221–251 | MR