Voir la notice de l'article provenant de la source Math-Net.Ru
@article{AA_2014_26_4_a5, author = {T. A. Suslina}, title = {Homogenization of elliptic systems with periodic coefficients: operator error estimates in~$L_2(\mathbb R^d)$ with corrector taken into account}, journal = {Algebra i analiz}, pages = {195--263}, publisher = {mathdoc}, volume = {26}, number = {4}, year = {2014}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/AA_2014_26_4_a5/} }
TY - JOUR AU - T. A. Suslina TI - Homogenization of elliptic systems with periodic coefficients: operator error estimates in~$L_2(\mathbb R^d)$ with corrector taken into account JO - Algebra i analiz PY - 2014 SP - 195 EP - 263 VL - 26 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/AA_2014_26_4_a5/ LA - ru ID - AA_2014_26_4_a5 ER -
%0 Journal Article %A T. A. Suslina %T Homogenization of elliptic systems with periodic coefficients: operator error estimates in~$L_2(\mathbb R^d)$ with corrector taken into account %J Algebra i analiz %D 2014 %P 195-263 %V 26 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/AA_2014_26_4_a5/ %G ru %F AA_2014_26_4_a5
T. A. Suslina. Homogenization of elliptic systems with periodic coefficients: operator error estimates in~$L_2(\mathbb R^d)$ with corrector taken into account. Algebra i analiz, Tome 26 (2014) no. 4, pp. 195-263. http://geodesic.mathdoc.fr/item/AA_2014_26_4_a5/
[1] Bakhvalov N. S., Panasenko G. P., Osrednenie protsessov v periodicheskikh sredakh, Nauka, M., 1984 | MR | Zbl
[2] Bensoussan A., Lions J.-L., Papanicolaou G., Asymptotic analysis for periodic structures, Stud. Math. Appl., 5, North-Holland Publ. Co., Amsterdam–New York, 1978 | MR | Zbl
[3] Birman M. Sh., Suslina T. A., “Periodicheskie differentsialnye operatory vtorogo poryadka. Porogovye svoistva i usredneniya”, Algebra i analiz, 15:5 (2003), 1–108 | MR | Zbl
[4] Birman M. Sh., Suslina T. A., “Porogovye approksimatsii rezolventy faktorizovannogo operatornogo semeistva s uchetom korrektora”, Algebra i analiz, 17:5 (2005), 69–90 | MR | Zbl
[5] Birman M. Sh., Suslina T. A., “Usrednenie periodicheskikh ellipticheskikh differentsialnykh operatorov s uchetom korrektora”, Algebra i analiz, 17:6 (2005), 1–104 | MR | Zbl
[6] Birman M. Sh., Suslina T. A., “Usrednenie periodicheskikh differentsialnykh operatorov s uchetom korrektora. Approksimatsiya reshenii v klasse Soboleva $H^1(\mathbb R^d)$”, Algebra i analiz, 18:6 (2006), 1–130 | MR | Zbl
[7] Borisov D. I., “Asimptotiki reshenii ellipticheskikh sistem s bystro ostsilliruyuschimi koeffitsientami”, Algebra i analiz, 20:2 (2008), 19–42 | MR | Zbl
[8] Zhikov V. V., “O nekotorykh otsenkakh iz teorii usredneniya”, Dokl. RAN, 406:5 (2006), 597–601 | MR | Zbl
[9] Zhikov V. V., Kozlov S. M., Oleinik O. A., Usrednenie differentsialnykh operatorov, Nauka, M., 1993 | MR
[10] Zhikov V. V., Pastukhova S. E., “On operator estimates for some problems in homogenization theory”, Russ. J. Math. Phys., 12:4 (2005), 515–524 | MR | Zbl
[11] Ladyzhenskaya O. A., Uraltseva N. N., Lineinye i kvazilineinye uravneniya ellipticheskogo tipa, Nauka, M., 1964 | MR
[12] Suslina T. A., “Homogenization of periodic second order differential operators including first order terms”, Amer. Math. Soc. Transl. (2), 225, Amer. Math. Soc., Providence, RI, 2008, 227–252 | MR | Zbl
[13] Suslina T. A., “Usrednenie v klasse Soboleva $H^1(\mathbb R^d)$ dlya periodicheskikh ellipticheskikh differentsialnykh operatorov vtorogo poryadka pri vklyuchenii chlenov pervogo poryadka”, Algebra i analiz, 22:1 (2010), 108–222 | MR | Zbl
[14] Suslina T. A., “Approksimatsiya rezolventy dvuparametricheskogo kvadratichnogo operatornogo puchka vblizi nizhnego kraya spektra”, Algebra i analiz, 25:5 (2013), 221–251 | MR