@article{AA_2014_26_4_a2,
author = {O. Yu. Ivanova},
title = {Independent generators of the $K$-group of a~standard $2$-dimensional field},
journal = {Algebra i analiz},
pages = {93--128},
year = {2014},
volume = {26},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/AA_2014_26_4_a2/}
}
O. Yu. Ivanova. Independent generators of the $K$-group of a standard $2$-dimensional field. Algebra i analiz, Tome 26 (2014) no. 4, pp. 93-128. http://geodesic.mathdoc.fr/item/AA_2014_26_4_a2/
[1] Vostokov S. V., “Yavnaya konstruktsiya teorii polei klassov mnogomernogo lokalnogo polya”, Izv. AN SSSR. Ser. mat., 49:2 (1985), 283–308 | MR | Zbl
[2] Zhukov I. B., “Milnorovskie i topologicheskie $K$-gruppy mnogomernykh polnykh polei”, Algebra i analiz, 9:1 (1997), 98–147 | MR | Zbl
[3] Ivanova O. Yu., “Poryadki topologicheskikh obrazuyuschikh $K$-gruppy standartnogo dvumernogo lokalnogo polya”, Zap. nauch. semin. POMI, 356, 2008, 118–148 | MR | Zbl
[4] Fesenko I. B., “Teoriya lokalnykh polei. Teoriya polei klassov. Mnogomernaya lokalnaya teoriya polei klassov”, Algebra i analiz, 4:3 (1992), 1–41 | MR | Zbl
[5] Fesenko I. B., Vostokov S. V., Local fields and their extensions. A constructive approach, Transl. Math. Monogr., 121, Amer. Math. Soc., Providence, RI, 1993 | MR | Zbl
[6] Fesenko I., “Topologocal Milnor $K$-groups of higher local fields”, Invitation to Higher Local Fields (Munster, 1999), Geom. Topol. Monogr., 3, Geom. Topol. Publ., Coventry, 2000, 61–74 | DOI | MR | Zbl
[7] Miki H., “On $\mathbb Z_p$-extensions of complete $p$-adic power series fields and function fields”, J. Fac. Sci. Univ. Tokyo Sect. 1A Math., 21 (1974), 377–393 | MR | Zbl
[8] Suslin A. A., “Torsion in $K_2$ of fields”, $K$-theory, 1:1 (1987), 5–29 | DOI | MR | Zbl