A remark on the reproducing kernel thesis for Hankel operators
Algebra i analiz, Tome 26 (2014) no. 3, pp. 180-189.

Voir la notice de l'article provenant de la source Math-Net.Ru

A simple proof is given of the so-called reproducing kernel thesis for Hankel operators.
Keywords: Hankel operator, reproducing kernel thesis, Bonsall's theorem, Uchiyama's lemma.
@article{AA_2014_26_3_a4,
     author = {S. Treil},
     title = {A remark on the reproducing kernel thesis for {Hankel} operators},
     journal = {Algebra i analiz},
     pages = {180--189},
     publisher = {mathdoc},
     volume = {26},
     number = {3},
     year = {2014},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/AA_2014_26_3_a4/}
}
TY  - JOUR
AU  - S. Treil
TI  - A remark on the reproducing kernel thesis for Hankel operators
JO  - Algebra i analiz
PY  - 2014
SP  - 180
EP  - 189
VL  - 26
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AA_2014_26_3_a4/
LA  - en
ID  - AA_2014_26_3_a4
ER  - 
%0 Journal Article
%A S. Treil
%T A remark on the reproducing kernel thesis for Hankel operators
%J Algebra i analiz
%D 2014
%P 180-189
%V 26
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AA_2014_26_3_a4/
%G en
%F AA_2014_26_3_a4
S. Treil. A remark on the reproducing kernel thesis for Hankel operators. Algebra i analiz, Tome 26 (2014) no. 3, pp. 180-189. http://geodesic.mathdoc.fr/item/AA_2014_26_3_a4/

[1] Bonsall F. F., “Boundedness of Hankel matrices”, J. London Math. Soc. (2), 29:2 (1984), 289–300 | DOI | MR | Zbl

[2] Jacob B., Partington J., Pott S., “Weighted interpolation in Paley–Wiener spaces and finite-time controllability”, J. Funct. Anal., 259:9 (2010), 2424–2436 | DOI | MR | Zbl

[3] Nazarov F., Pisier G., Treil S., Volberg A., “Sharp estimates in vector Carleson imbedding theorem and for vector paraproducts”, J. Reine Angew. Math., 542 (2002), 147–171 | MR | Zbl

[4] Nikol'skiĭ N. K., Treatise on the shift operator, Spectral Function Theory, Grundlehren Math. Wiss., 273, Springer-Verlag, Berlin, 1986 | DOI | MR | Zbl

[5] Petermichl S., Treil S., Wick B., “Carleson potentials and the reproducing kernel thesis for embedding theorems”, Illinois J. Math., 51:4 (2007), 1249–1263 | MR | Zbl

[6] Treil S. R., “Operatory Gankelya, teoremy vlozheniya i bazisy iz koinvariantnykh podprostranstv operatora kratnogo sdviga”, Algebra i analiz, 1:6 (1989), 200–234 | MR | Zbl