Voir la notice de l'article provenant de la source Math-Net.Ru
@article{AA_2014_26_3_a4, author = {S. Treil}, title = {A remark on the reproducing kernel thesis for {Hankel} operators}, journal = {Algebra i analiz}, pages = {180--189}, publisher = {mathdoc}, volume = {26}, number = {3}, year = {2014}, language = {en}, url = {http://geodesic.mathdoc.fr/item/AA_2014_26_3_a4/} }
S. Treil. A remark on the reproducing kernel thesis for Hankel operators. Algebra i analiz, Tome 26 (2014) no. 3, pp. 180-189. http://geodesic.mathdoc.fr/item/AA_2014_26_3_a4/
[1] Bonsall F. F., “Boundedness of Hankel matrices”, J. London Math. Soc. (2), 29:2 (1984), 289–300 | DOI | MR | Zbl
[2] Jacob B., Partington J., Pott S., “Weighted interpolation in Paley–Wiener spaces and finite-time controllability”, J. Funct. Anal., 259:9 (2010), 2424–2436 | DOI | MR | Zbl
[3] Nazarov F., Pisier G., Treil S., Volberg A., “Sharp estimates in vector Carleson imbedding theorem and for vector paraproducts”, J. Reine Angew. Math., 542 (2002), 147–171 | MR | Zbl
[4] Nikol'skiĭ N. K., Treatise on the shift operator, Spectral Function Theory, Grundlehren Math. Wiss., 273, Springer-Verlag, Berlin, 1986 | DOI | MR | Zbl
[5] Petermichl S., Treil S., Wick B., “Carleson potentials and the reproducing kernel thesis for embedding theorems”, Illinois J. Math., 51:4 (2007), 1249–1263 | MR | Zbl
[6] Treil S. R., “Operatory Gankelya, teoremy vlozheniya i bazisy iz koinvariantnykh podprostranstv operatora kratnogo sdviga”, Algebra i analiz, 1:6 (1989), 200–234 | MR | Zbl