Voir la notice de l'article provenant de la source Math-Net.Ru
@article{AA_2014_26_2_a4, author = {B. N. Khabibullin and G. R. Talipova and F. B. Khabibullin}, title = {Zero subsequences for {Bernstein's} spaces and the completeness of exponential systems in spaces of functions on an interval}, journal = {Algebra i analiz}, pages = {185--215}, publisher = {mathdoc}, volume = {26}, number = {2}, year = {2014}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/AA_2014_26_2_a4/} }
TY - JOUR AU - B. N. Khabibullin AU - G. R. Talipova AU - F. B. Khabibullin TI - Zero subsequences for Bernstein's spaces and the completeness of exponential systems in spaces of functions on an interval JO - Algebra i analiz PY - 2014 SP - 185 EP - 215 VL - 26 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/AA_2014_26_2_a4/ LA - ru ID - AA_2014_26_2_a4 ER -
%0 Journal Article %A B. N. Khabibullin %A G. R. Talipova %A F. B. Khabibullin %T Zero subsequences for Bernstein's spaces and the completeness of exponential systems in spaces of functions on an interval %J Algebra i analiz %D 2014 %P 185-215 %V 26 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/AA_2014_26_2_a4/ %G ru %F AA_2014_26_2_a4
B. N. Khabibullin; G. R. Talipova; F. B. Khabibullin. Zero subsequences for Bernstein's spaces and the completeness of exponential systems in spaces of functions on an interval. Algebra i analiz, Tome 26 (2014) no. 2, pp. 185-215. http://geodesic.mathdoc.fr/item/AA_2014_26_2_a4/
[1] Khabibullin B. N., Polnota sistem eksponent i mnozhestva edinstvennosti, RITs BashGU, Ufa, 2012
[2] Levin B. Ya., Lectures on entire functions, Transl. Math. Monographs, 150, Amer. Math. Soc., Providence, RI, 1996 | MR | Zbl
[3] Levinson N., Gap and density theorems, Amer. Math. Soc. Colloq. Publ., 26, Amer. Math. Soc., New York, 1940 | MR | Zbl
[4] Schwartz L., “Approximation d'une fonction quelconque par des sommes d'exponentielles imaginaires”, Ann. Fac. Sci. Toulouse (4), 6 (1943), 111–176 | DOI | MR | Zbl
[5] Redheffer R. M., “Completeness of sets of complex exponential”, Adv. in Math., 24:1 (1977), 1–62 | DOI | MR | Zbl
[6] Havin V. P., Jöricke B., The uncertainly principle in harmonic analysis, Ergeb. Math. Grenzg., 28, Springer-Verlag, Berlin, 1994 | MR | Zbl
[7] Sedletskii A. M., Fourier transforms and approximation, Analytical Methods and Spectral Functions, 4, Gordon and Breach Sci. Publ., Amsterdam, 2000 | MR | Zbl
[8] Sedletskii A. M., “Analiticheskoe preobrazovanie Fure i eksponentsialnye approksimatsii. I”, Sovr. mat. Fund. napravleniya, 5, 2003, 3–152
[9] Sedletskii A. M., “Analiticheskoe preobrazovanie Fure i eksponentsialnye approksimatsii. II”, Sovr. mat. Fund. napravleniya, 6, 2003, 3–162
[10] Makarov N., Poltoratski A., “Meromorphic inner functions, Toeplitz kernels and the uncertainty principle”, Perespectives in analysis, Math. Phys. Stud., 27, Springer, Berlin, 2005, 185–252 | DOI | MR | Zbl
[11] Baranov A. D., “Completeness and Riesz bases of reproducing kernels in model subspaces”, Int. Math. Res. Not., 2006 (2006), Art. ID 81530 | MR
[12] Baranov A. D., Modelnye podprostranstva prostranstv Khardi (neravenstva Bernshteina, sistemy vosproizvodyaschikh yader, teoremy tipa Berlinga–Malyavena), Dokt. dis., SPb., 2011
[13] King F. W., Hilbert transforms, v. I, Encyclopedia Math. Appl., 124, Cambridge Univ. Press, Cambridge, 2009 | Zbl
[14] King F. W, Hilbert transforms, v. II, Encyclopedia Math. Appl., 125, Cambridge Univ. Press, Cambridge, 2009 | Zbl
[15] Pandey J. N., The Hilbert transform of Schwartz distributions and applications, Wiley-Interscience Publ., 1996 | MR | Zbl
[16] Shvarts L., Analiz, v. 1, Mir, M., 1972
[17] Khabibullin B. N., “Primeneniya v kompleksnom analize dvoistvennogo predstavleniya funktsionalov na vektornykh reshetkakh”, Issled. po mat. analizu, diff. uravneniyam i ikh pril., Matematicheskii forum. Itogi nauki. Yug Rossii, 4, YuMI VNTs RAN i RSO-A, Vladikavkaz, 2010, 102–118 | MR
[18] Khabibullin B. N., “Mnozhestva edinstvennosti v prostranstvakh tselykh funktsii odnoi peremennoi”, Izv. AN SSSR. Cer. mat., 55:5 (1991), 1101–1123 | MR | Zbl
[19] Grigoryan S. A., “Obobschennye analiticheskie funktsii”, Uspekhi mat. nauk, 49:2 (1994), 3–42 | MR | Zbl
[20] Khabibullin B. N., “Dvoistvennoe predstavlenie superlineinykh funktsionalov i ego primeneniya v teorii funktsii. II”, Izv. RAN. Cer. mat., 65:5 (2001), 167–190 | DOI | MR | Zbl
[21] Khabibullin B. N., Raspredelenie nulei tselykh funktsii i vymetanie, Dokt. dis., Kharkov, 1993
[22] Blanchet P., “On removable singularities of subharmonic and plurisubharmonic functions”, Complex Variables Theory Appl., 26:4 (1995), 311–322 | DOI | MR | Zbl
[23] Khabibullin B. N., “Polnota sistem tselykh funktsii v prostranstvakh golomorfnykh funktsii”, Mat. zametki, 66:4 (1999), 603–616 | DOI | MR
[24] Ransford T. J., Potential theory in the complex plane, Cambridge Univ. Press, Cambridge, 1995 | MR | Zbl
[25] Garnett Dzh., Ogranichennye analiticheskie funktsii, Mir, M., 1984 | MR | Zbl
[26] Brelo M., Osnovy klassicheskoi teorii potentsiala, Mir, M., 1964 | MR | Zbl
[27] Koosis P., The logarithmic integral, v. II, Cambridge Stud. Adv. Math., 21, Cambridge Univ. Press, Cambridge, 1992 | MR | Zbl
[28] Khabibullin B. N., “Nekonstruktivnye dokazatelstva teoremy Berlinga–Malyavena o radiuse polnoty i teoremy needinstvennosti dlya tselykh funktsii”, Izv. RAN. Ser. mat., 58:4 (1994), 125–148 | MR | Zbl
[29] Koosis P., Leçons sur le théorème de Beurling et Malliavin, Univ. de Montréal, Les Publ. CRM, Montréal, 1996 | MR