Zero subsequences for Bernstein's spaces and the completeness of exponential systems in spaces of functions on an interval
Algebra i analiz, Tome 26 (2014) no. 2, pp. 185-215.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{AA_2014_26_2_a4,
     author = {B. N. Khabibullin and G. R. Talipova and F. B. Khabibullin},
     title = {Zero subsequences for {Bernstein's} spaces and the completeness of exponential systems in spaces of functions on an interval},
     journal = {Algebra i analiz},
     pages = {185--215},
     publisher = {mathdoc},
     volume = {26},
     number = {2},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AA_2014_26_2_a4/}
}
TY  - JOUR
AU  - B. N. Khabibullin
AU  - G. R. Talipova
AU  - F. B. Khabibullin
TI  - Zero subsequences for Bernstein's spaces and the completeness of exponential systems in spaces of functions on an interval
JO  - Algebra i analiz
PY  - 2014
SP  - 185
EP  - 215
VL  - 26
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AA_2014_26_2_a4/
LA  - ru
ID  - AA_2014_26_2_a4
ER  - 
%0 Journal Article
%A B. N. Khabibullin
%A G. R. Talipova
%A F. B. Khabibullin
%T Zero subsequences for Bernstein's spaces and the completeness of exponential systems in spaces of functions on an interval
%J Algebra i analiz
%D 2014
%P 185-215
%V 26
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AA_2014_26_2_a4/
%G ru
%F AA_2014_26_2_a4
B. N. Khabibullin; G. R. Talipova; F. B. Khabibullin. Zero subsequences for Bernstein's spaces and the completeness of exponential systems in spaces of functions on an interval. Algebra i analiz, Tome 26 (2014) no. 2, pp. 185-215. http://geodesic.mathdoc.fr/item/AA_2014_26_2_a4/

[1] Khabibullin B. N., Polnota sistem eksponent i mnozhestva edinstvennosti, RITs BashGU, Ufa, 2012

[2] Levin B. Ya., Lectures on entire functions, Transl. Math. Monographs, 150, Amer. Math. Soc., Providence, RI, 1996 | MR | Zbl

[3] Levinson N., Gap and density theorems, Amer. Math. Soc. Colloq. Publ., 26, Amer. Math. Soc., New York, 1940 | MR | Zbl

[4] Schwartz L., “Approximation d'une fonction quelconque par des sommes d'exponentielles imaginaires”, Ann. Fac. Sci. Toulouse (4), 6 (1943), 111–176 | DOI | MR | Zbl

[5] Redheffer R. M., “Completeness of sets of complex exponential”, Adv. in Math., 24:1 (1977), 1–62 | DOI | MR | Zbl

[6] Havin V. P., Jöricke B., The uncertainly principle in harmonic analysis, Ergeb. Math. Grenzg., 28, Springer-Verlag, Berlin, 1994 | MR | Zbl

[7] Sedletskii A. M., Fourier transforms and approximation, Analytical Methods and Spectral Functions, 4, Gordon and Breach Sci. Publ., Amsterdam, 2000 | MR | Zbl

[8] Sedletskii A. M., “Analiticheskoe preobrazovanie Fure i eksponentsialnye approksimatsii. I”, Sovr. mat. Fund. napravleniya, 5, 2003, 3–152

[9] Sedletskii A. M., “Analiticheskoe preobrazovanie Fure i eksponentsialnye approksimatsii. II”, Sovr. mat. Fund. napravleniya, 6, 2003, 3–162

[10] Makarov N., Poltoratski A., “Meromorphic inner functions, Toeplitz kernels and the uncertainty principle”, Perespectives in analysis, Math. Phys. Stud., 27, Springer, Berlin, 2005, 185–252 | DOI | MR | Zbl

[11] Baranov A. D., “Completeness and Riesz bases of reproducing kernels in model subspaces”, Int. Math. Res. Not., 2006 (2006), Art. ID 81530 | MR

[12] Baranov A. D., Modelnye podprostranstva prostranstv Khardi (neravenstva Bernshteina, sistemy vosproizvodyaschikh yader, teoremy tipa Berlinga–Malyavena), Dokt. dis., SPb., 2011

[13] King F. W., Hilbert transforms, v. I, Encyclopedia Math. Appl., 124, Cambridge Univ. Press, Cambridge, 2009 | Zbl

[14] King F. W, Hilbert transforms, v. II, Encyclopedia Math. Appl., 125, Cambridge Univ. Press, Cambridge, 2009 | Zbl

[15] Pandey J. N., The Hilbert transform of Schwartz distributions and applications, Wiley-Interscience Publ., 1996 | MR | Zbl

[16] Shvarts L., Analiz, v. 1, Mir, M., 1972

[17] Khabibullin B. N., “Primeneniya v kompleksnom analize dvoistvennogo predstavleniya funktsionalov na vektornykh reshetkakh”, Issled. po mat. analizu, diff. uravneniyam i ikh pril., Matematicheskii forum. Itogi nauki. Yug Rossii, 4, YuMI VNTs RAN i RSO-A, Vladikavkaz, 2010, 102–118 | MR

[18] Khabibullin B. N., “Mnozhestva edinstvennosti v prostranstvakh tselykh funktsii odnoi peremennoi”, Izv. AN SSSR. Cer. mat., 55:5 (1991), 1101–1123 | MR | Zbl

[19] Grigoryan S. A., “Obobschennye analiticheskie funktsii”, Uspekhi mat. nauk, 49:2 (1994), 3–42 | MR | Zbl

[20] Khabibullin B. N., “Dvoistvennoe predstavlenie superlineinykh funktsionalov i ego primeneniya v teorii funktsii. II”, Izv. RAN. Cer. mat., 65:5 (2001), 167–190 | DOI | MR | Zbl

[21] Khabibullin B. N., Raspredelenie nulei tselykh funktsii i vymetanie, Dokt. dis., Kharkov, 1993

[22] Blanchet P., “On removable singularities of subharmonic and plurisubharmonic functions”, Complex Variables Theory Appl., 26:4 (1995), 311–322 | DOI | MR | Zbl

[23] Khabibullin B. N., “Polnota sistem tselykh funktsii v prostranstvakh golomorfnykh funktsii”, Mat. zametki, 66:4 (1999), 603–616 | DOI | MR

[24] Ransford T. J., Potential theory in the complex plane, Cambridge Univ. Press, Cambridge, 1995 | MR | Zbl

[25] Garnett Dzh., Ogranichennye analiticheskie funktsii, Mir, M., 1984 | MR | Zbl

[26] Brelo M., Osnovy klassicheskoi teorii potentsiala, Mir, M., 1964 | MR | Zbl

[27] Koosis P., The logarithmic integral, v. II, Cambridge Stud. Adv. Math., 21, Cambridge Univ. Press, Cambridge, 1992 | MR | Zbl

[28] Khabibullin B. N., “Nekonstruktivnye dokazatelstva teoremy Berlinga–Malyavena o radiuse polnoty i teoremy needinstvennosti dlya tselykh funktsii”, Izv. RAN. Ser. mat., 58:4 (1994), 125–148 | MR | Zbl

[29] Koosis P., Leçons sur le théorème de Beurling et Malliavin, Univ. de Montréal, Les Publ. CRM, Montréal, 1996 | MR