Voir la notice de l'article provenant de la source Math-Net.Ru
@article{AA_2014_26_2_a2, author = {A. V. Malyutin}, title = {Pretrees and the shadow topology}, journal = {Algebra i analiz}, pages = {45--118}, publisher = {mathdoc}, volume = {26}, number = {2}, year = {2014}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/AA_2014_26_2_a2/} }
A. V. Malyutin. Pretrees and the shadow topology. Algebra i analiz, Tome 26 (2014) no. 2, pp. 45-118. http://geodesic.mathdoc.fr/item/AA_2014_26_2_a2/
[1] Adeleke S. A., Neumann P. M., Relations related to betweenness: their structure and automorphisms, Mem. Amer. Math. Soc., 131, no. 623, 1998 | MR
[2] Aleksandrov P. S., Uryson P. S., Memuar o kompaktnykh topologicheskikh prostranstvakh, Nauka, M., 1971 | MR
[3] Bankston P., “Road systems and betweenness”, Bull. Math. Sci., 3:3 (2013), 389–408 | DOI | MR | Zbl
[4] Bridson M. R., Haefliger A., Metric spaces of non-positive curvature, Grundlehren Math. Wiss., 319, Springer-Verlag, Berlin, 1999 | DOI | MR | Zbl
[5] Bowditch B. H., Treelike structures arising from continua and convergence groups, Mem. Amer. Math. Soc., 139, no. 662, 1999 | MR
[6] Bowditch B. H., Crisp J., “Archimedean actions on median pretrees”, Math. Proc. Cambridge Philos. Soc., 130:3 (2001), 383–400 | DOI | MR | Zbl
[7] Bowditch B. H., “Peripheral splittings of groups”, Trans. Amer. Math. Soc., 353:10 (2001), 4057–4082 | DOI | MR | Zbl
[8] Cartwright D. I., Soardi P. M., Woess W., “Martin and end compactifications for non-locally finite graphs”, Trans. Amer. Math. Soc., 338:2 (1993), 679–693 | MR | Zbl
[9] Chiswell I. M., Introduction to $\Lambda$-trees, World Sci. Publ. Co., River Edge, NJ, 2001 | MR | Zbl
[10] Chiswell I. M., “Generalised trees and $\Lambda$-trees”, Combinatorial and Geometric Group Theory, London Math. Soc. Lecture Note Ser., 204, Cambridge Univ. Press, Cambridge, 1995, 43–55 | MR | Zbl
[11] Chvátal V., “Sylvester–Gallai theorem and metric betweenness”, Discrete Comput. Geom., 31:2 (2004), 175–195 | DOI | MR | Zbl
[12] Coulbois T., Hilion A., Lustig M., “Non-unique ergodicity, observers' topology and the dual algebraic lamination for $R$-trees”, Illinois J. Math., 51:3 (2007), 897–911 | MR | Zbl
[13] Devlin K. J., Johnsbråten H., The Souslin problem, Lecture Notes in Math., 405, Springer-Verlag, New York, 1974 | DOI | MR | Zbl
[14] Duchet P., “Convexity in combinatorial structures”, Rend. Circ. Mat. Palermo (2) Suppl., 14 (1987), 261–293 | MR | Zbl
[15] Favre C., Jonsson M., The valuative tree, Lecture Notes in Math., 1853, Springer-Verlag, Berlin, 2004 | DOI | MR | Zbl
[16] Gromov M. L., Metric structures for Riemannian and non-Riemannian spaces, Progress Math., 152, Birkhäuser, Boston, 1999 | MR | Zbl
[17] Gromov M. L., Giperbolicheskie gruppy, NITs Regulyarnaya i khaoticheskaya dinamika, Izhevsk, 2002
[18] de la Harpe P., Préaux J.-P., “$C^*$-simple groups: amalgamated free products, HNN extensions, and fundamental groups of $3$-manifolds”, J. Topol. Anal., 3:4 (2011), 451–489 | DOI | MR | Zbl
[19] Hedlíková J., “Ternary spaces, media, and Chebyshev sets”, Czechoslovak Math. J., 33:3 (1983), 373–389 | MR | Zbl
[20] Ivić A., Mamuzić Z., Mijajlović Ž., Todorčević S. (eds.), Selected papers of Ðuro Kurepa, Mat. Inst. SANU, Belgrade, 1996
[21] Jamison-Waldner R. E., “A perspective on abstract convexity: Classifying alignments by varieties”, Convexity and Related Combinatorial Geometry, Lecture notes Pure Appl. Math., 76, Dekker, New York, 1982, 113–150 | MR
[22] Kurepa G., “Ensembles ordonnés et leurs sous-ensembles bien ordonnés”, C. R. Acad. Sci. Paris, 242 (1956), 2202–2203, Republished in [20] | MR | Zbl
[23] Malyutin A. V., “Pretrees and arborescent convexities”, Zap. nauch. semin. POMI, 415, 2013, 75–90
[24] Mendris R., Zlatoš P., “Axiomatization and undecidability results for metrizable betweenness relations”, Proc. Amer. Math. Soc., 123:3 (1995), 873–882 | MR | Zbl
[25] van Mill J., Wattel E., “Souslin dendrons”, Proc. Amer. Math. Soc., 72:3 (1978), 545–555 | DOI | MR | Zbl
[26] van Mill J., Wattel E., “Dendrons”, Topology and Order Structures, Pt. 1, Math. Centre Tracts, 142, Math. Centrum, Amsterdam, 1981, 59–81 | MR | Zbl
[27] van Mill J., Wattel E., “Subbase characterizations of subspaces of compact trees”, Topology Appl., 13:3 (1982), 321–326 | DOI | MR | Zbl
[28] Monod N., Shalom Y., “Cocycle superrigidity and bounded cohomology for negatively curved spaces”, J. Differential Geom., 67:3 (2004), 395–455 | MR | Zbl
[29] Muenzenberger T. B., Smithson R. E., “Semilattice structures on dendritic spaces”, Topology Proc., 2:1 (1977), 243–260 | MR
[30] Newman M. H. A., Elements of the topology of plane sets of points, Cambridge Univ. Press, Cambridge, 1939 | MR
[31] Nikiel J., Topologies on pseudo-trees and applications, Mem. Amer. Math. Soc., 82, no. 416, 1989 | MR
[32] Papasoglu P., Swenson E. L., “From continua to $\mathbb R$-trees”, Algebr. Geom. Topol., 6 (2006), 1759–1784 | DOI | MR | Zbl
[33] Pearson B. J., “Concerning the structure of dendritic spaces”, Comment. Math. Univ. Carolinae, 15:2 (1974), 293–305 | MR | Zbl
[34] Steen L. A., Seebach J. A. (Jr.), Counterexamples in topology, Springer-Verlag, New York, 1978 | MR | Zbl
[35] Soltan V. P., Vvedenie v aksiomaticheskuyu teoriyu vypuklosti, Shtiintsa, Kishinev, 1984 | MR | Zbl
[36] Swenson E. L., “A cut point theorem for CAT(0) groups”, J. Differential Geom., 53:2 (1999), 327–358 | MR | Zbl
[37] van de Vel M. L. J., Theory of convex structures, North Holland Math. Library, 50, North-Holland Publ. Co., Amsterdam, 1993 | MR | Zbl
[38] Viro O. Ya., Ivanov O. A., Netsvetaev N. Yu., Kharlamov V. M., Elementarnaya topologiya, MTsNMO, M., 2010
[39] Ward L. E. (Jr.), “Recent developments in dendritic spaces and related topics”, Studies in Topology, Proc. Conf. (Univ. North Carolina, Charlotte, N.C., 1974), Acad. Press, New York, 1975, 601–647 | MR
[40] Ward L. E. (Jr.), “Axioms for cutpoints”, General Topology and Modern Analysis, Proc. Conf. (Univ. California, Riverside, Calif., 1980), Acad. Press, New York, 1981, 327–336 | MR