Compactness criteria for spaces of measurable functions
Algebra i analiz, Tome 26 (2014) no. 1, pp. 68-93.

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper contains new compactness criteria for a wide class of translation-invariant spaces of measurable functions. The results imply new compactness theorems for the families of Orlicz classes (such as $L_0(\mathbb R^d)$) and Marcinkiewicz–Lorentz spaces (including $L_{pq}$ with $p1$).
Keywords: compactness, translation invariant $F$- and $B$-lattices, Orlicz classes, Marcinkiewicz–Lorentz quasi-Banach spaces.
@article{AA_2014_26_1_a2,
     author = {Yu. Brudnyi},
     title = {Compactness criteria for spaces of measurable functions},
     journal = {Algebra i analiz},
     pages = {68--93},
     publisher = {mathdoc},
     volume = {26},
     number = {1},
     year = {2014},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/AA_2014_26_1_a2/}
}
TY  - JOUR
AU  - Yu. Brudnyi
TI  - Compactness criteria for spaces of measurable functions
JO  - Algebra i analiz
PY  - 2014
SP  - 68
EP  - 93
VL  - 26
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AA_2014_26_1_a2/
LA  - en
ID  - AA_2014_26_1_a2
ER  - 
%0 Journal Article
%A Yu. Brudnyi
%T Compactness criteria for spaces of measurable functions
%J Algebra i analiz
%D 2014
%P 68-93
%V 26
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AA_2014_26_1_a2/
%G en
%F AA_2014_26_1_a2
Yu. Brudnyi. Compactness criteria for spaces of measurable functions. Algebra i analiz, Tome 26 (2014) no. 1, pp. 68-93. http://geodesic.mathdoc.fr/item/AA_2014_26_1_a2/

[1] Banach S., Théorie des opérations linéaires, Monografie Matematyczne, 1, Warsaw, 1932 | Zbl

[2] Brudnyi Yu. A., “Ratsionalnaya approksimatsiya i teoremy vlozheniya”, Dokl. AN SSSR, 247:2 (1979), 265–269 | MR

[3] Brudnyi Yu. A., “Mnogomernyi analog odnoi teoremy Uitni”, Mat. sb., 82(124):2 (1970), 175–191 | MR | Zbl

[4] Brudnyi Yu. A., “Neravenstvo tipa Uitni dlya kvazibanakhovykh prostranstv”, Funktsionalnye prostranstva i ikh primenenie k differentsialnym uravneniyam, Izd-vo RUDN, M., 1992, 21–27

[5] Dunford N., Schwartz J. T., Linear operators, v. 1, General theory, Interscience Publ., Inc., New York, 1958 | MR | Zbl

[6] Fréchet M., “Sur les ensembles compacts de fonctions mesurables”, Fund. Math., 9 (1927), 25–32 | Zbl

[7] Frink A. H., “Distance functions and the metrization problem”, Bull. Amer. Math. Soc., 43:2 (1937), 133–142 | DOI | MR | Zbl

[8] Hanson E., “A note on compactness”, Bull. Amer. Math. Soc., 39:6 (1933), 397–400 | DOI | MR | Zbl

[9] Heldberg L., Netrusov Yu., An axiomatic approach to function spaces, spectral synthesis and Luzin approximation, Mem. Amer. Math. Soc., 188, no. 882, 2007 | MR

[10] Kalton N., “Compact and strictly singular operators on Orlicz spaces”, Israel J. Math., 26:2 (1977), 329–355 | DOI | MR

[11] Kantorovich L. V., Akilov G. P., Functional Analysis, Pergamon Press, Oxford, 1982 | MR | Zbl

[12] Gribanov Yu. I., “Nelineinye operatory v prostranstvakh Orlicha”, Uchen. zap. Kazan. un-ta, 115, no. 7, 1955, 5–13

[13] Kolmogoroff A., “Über die Kompaktheit der Funktionenmengen bei der Konvergenz im Mittel”, Nachr. Akad. Wiss. Göttingen Math.-Phys. Kl., 1931 (1931), 60–63 | Zbl

[14] Krasnoselskii M. A., Rutickii Ya. B., Convex functions and Orlicz spaces, P. Noordhoff Ltd., Groningen, 1961 | MR

[15] Krein S. G., Petunin Yu. I., Semenov E. M., Interpolation of linear operators, Transl. Math. Monographs, 54, Amer. Math. Soc., Providence, RI, 1982 | MR

[16] Lindenstrauss J., Tzafriri L., Classical Banach spaces, v. I, Ergebniss Math., 92, Sequence spaces, Springer-Verlag, Berlin, 1977 | MR | Zbl

[17] Lorentz G. G., DeVore R., Constructive approximation, Grundlehren Math. Wiss., 303, Springer-Verlag, Berlin, 1993 | MR | Zbl

[18] Nevskii M. V., “O priblizhenii funktsii v klassakh Orlicha”, Issledovaniya po teorii funktsii mnozhestvennykh veschestvennykh peremennykh, eds. Yu. Brudnyi, YarGU, Yaroslavl, 1984, 83–101 | MR

[19] Nikolskii S. M., “Lineinye uravneniya v metricheskom prostranstve”, Dokl. AN SSSR, 2:8 (1936), 309–312

[20] Riesz M., “Sur les ensembles compacts de fonctions sommables”, Acta. Sci. Math. Szeged, 6 (1933), 136–142 | Zbl

[21] Rolewicz S., Metric linear spaces, Monografie Matematyczne, 56, PWN–Polish Sci. Publ., Warszaw, 1972 | MR | Zbl

[22] Shilov G. E., “Odnorodnye koltsa”, Uspekhi mat. nauk, 6:1 (1951), 91–137 | MR | Zbl

[23] Shilov G. E., “Kriterii kompaktnosti v odnorodnom prostranstve funktsii”, Dokl. AN SSSR, 92:1 (1953), 11–12 | Zbl

[24] Sudakov V. N., “K voprosu o kriteriyakh kompaktnosti v funktsionalnykh prostranstvakh”, Uspekhi mat. nauk, 12:3 (1957), 221–224 | MR | Zbl

[25] Takahashi T., “On the compactness of the function-set by the convergence in mean of general type”, Studia Math., 5 (1934), 141–150 | Zbl

[26] Tamarkin J. D., “On the compactness of the space $L_p$”, Bull. Amer. Math. Soc., 38:2 (1932), 79–84 | DOI | MR | Zbl

[27] Timan A. F., Theory of approximation of functions of a real variable, Intern. Ser. Monographs Pure and Appl. Math., 34, Pergamon Press, New York, 1963 | MR | Zbl

[28] Tsuji M., “On the compactness of space $L_p$ $(p>0)$ and its application to integral operators”, Kodai Math. Sem. Rep., 3 (1951), 33–36 | DOI | MR

[29] Tulajkov A., “Zur Kompaktheit im Raum $L_p$ für $p=1$”, Nachr. Akad. Wiss. Göttingen, Math.-Phys. Kl., 1933 (1933), 167–170 | Zbl