Cwikel type estimates as a~consequence of some properties of the heat kernel
Algebra i analiz, Tome 25 (2013) no. 5, pp. 173-201.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{AA_2013_25_5_a5,
     author = {V. A. Sloushch},
     title = {Cwikel type estimates as a~consequence of some properties of the heat kernel},
     journal = {Algebra i analiz},
     pages = {173--201},
     publisher = {mathdoc},
     volume = {25},
     number = {5},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AA_2013_25_5_a5/}
}
TY  - JOUR
AU  - V. A. Sloushch
TI  - Cwikel type estimates as a~consequence of some properties of the heat kernel
JO  - Algebra i analiz
PY  - 2013
SP  - 173
EP  - 201
VL  - 25
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AA_2013_25_5_a5/
LA  - ru
ID  - AA_2013_25_5_a5
ER  - 
%0 Journal Article
%A V. A. Sloushch
%T Cwikel type estimates as a~consequence of some properties of the heat kernel
%J Algebra i analiz
%D 2013
%P 173-201
%V 25
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AA_2013_25_5_a5/
%G ru
%F AA_2013_25_5_a5
V. A. Sloushch. Cwikel type estimates as a~consequence of some properties of the heat kernel. Algebra i analiz, Tome 25 (2013) no. 5, pp. 173-201. http://geodesic.mathdoc.fr/item/AA_2013_25_5_a5/

[1] Cwikel M., “Weak type estimates for singular values and the number of bound states of Schrödinger operators”, Ann. of Math. (2), 106:1 (1977), 93–100 | DOI | MR | Zbl

[2] Birman M. S., Solomyak M. Z., “Negative discrete spectrum of the Schrödinger operator with large coupling constant: a qualitative discussion”, Order, disorder and chaos in quantum systems (Dubna, 1989), Oper. Theory, Adv. Appl., 46, Birkhäuser, Basel, 1990, 3–16 | MR

[3] Weidl T., “Cwikel type estimates in non-power ideals”, Math. Nachr., 176 (1995), 315–334 | DOI | MR | Zbl

[4] Slousch V. A., “Nekotorye obobscheniya otsenki Tsvikelya dlya integralnykh operatorov”, Tr. SPb. mat. o-va, 14, 2007, 169–196

[5] Birman M. Sh., Solomyak M. Z., “Otsenki singulyarnykh chisel integralnykh operatorov”, Uspekhi mat. nauk, 32:1 (1977), 17–84 | MR | Zbl

[6] Simon B., Trace ideals and their applications, London Mathematical Society Lecture Note Series, 35, Cambridge Univ. Press, Cambridge, 1979 | MR | Zbl

[7] Birman M. Sh., Karadzhov G. E., Solomyak M. Z., “Boundedness conditions and spectrum estimates for the operators $b(X)a(D)$ and their analogs”, Estimates and asymptotics for discrete spectra of integral and differential equations (Leningrad, 1989–90), Adv. Soviet Math., 7, Amer. Mat. Soc., Providence, RI, 1991, 85–106 | MR

[8] Yafaev D. R., “A trace formula for the Dirac operator”, Bull. London Math. Soc., 37:6 (2005), 908–918 | DOI | MR | Zbl

[9] Aronson D. G., “Bounds for the fundamental solutions of a parabolic equation”, Bull. Amer. Math. Soc., 73 (1967), 890–896 | DOI | MR | Zbl

[10] Davies E. B., Heat kernels and spectral theory, Cambridge Tracts in Math., 92, Cambridge Univ. Press, Cambridge, 1989 | MR | Zbl

[11] Birman M. Sh., Solomyak M. Z., Spektralnaya teoriya samosopryazhennykh operatorov v gilbertovom prostranstve, Izd-vo “Lan”, SPb., 2010

[12] Khardi G. G., Littlvud Dzh. E., Polia G., Neravenstva, Gosinoizdat, M., 1948

[13] Rotfeld S. Yu., “O singulyarnykh chislakh summy vpolne nepreryvnykh operatorov”, Probl. mat. fiz., 3, LGU, L., 1968, 81–87 | MR