Voir la notice de l'article provenant de la source Math-Net.Ru
@article{AA_2013_25_4_a1, author = {M. Borovoi}, title = {On the unramified {Brauer} group of a~homogeneous space}, journal = {Algebra i analiz}, pages = {23--27}, publisher = {mathdoc}, volume = {25}, number = {4}, year = {2013}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/AA_2013_25_4_a1/} }
M. Borovoi. On the unramified Brauer group of a~homogeneous space. Algebra i analiz, Tome 25 (2013) no. 4, pp. 23-27. http://geodesic.mathdoc.fr/item/AA_2013_25_4_a1/
[1] Bogomolov F. A., “Gruppy Brauera polei invariantov algebraicheskikh grupp”, Mat. sb., 180:2 (1989), 279–293 | MR | Zbl
[2] Borovoi M., “The Brauer–Manin obstruction to the Hasse principle for homogeneous spaces with connected or abelian stabilizer”, J. Reine Angew. Math., 473 (1996), 181–194 | MR | Zbl
[3] Borovoi M., Demarche C., Harari D., “Complexes de groupes de type multiplicatif et groupe de Brauer non ramifié des espaces homogènes”, Ann. Sci. École Norm. Super. (to appear)
[4] Borovoi M., Kunyavskiĭ B. È., “Formulas for the unramified Brauer group of a principal homogeneous space of a linear algebraic group”, J. Algebra, 225:2 (2000), 804–821 | DOI | MR | Zbl
[5] Colliot-Thélène J.-L., Kunyavskiĭ B. È., “Groupe de Picard et groupe de Brauer des compactifications lisses d'espaces homogènes”, J. Algebraic Geom., 15:4 (2006), 733–752 | DOI | MR | Zbl
[6] Colliot-Thélène J.-L., Sansuc J.-J., “The rationality problem for fields of invariants under linear algebraic groups (with special regards to the rationality problem)”, Algebraic groups and homogeneous spaces, Tata Inst. Fund. Res. Stud. Math., Tata Inst. Fund. Res., Mumbai, 2007, 113–186 | MR | Zbl
[7] Sansuc J.-J., “Groupe de Brauer et arithmétique des groupes algébriques linéaires sur un corps de nombres”, J. Reine Angew. Math., 327 (1981), 12–80 | MR | Zbl