Comparison theorems for the small ball probabilities of the Green Gaussian processes in weighted $L_2$-norms
Algebra i analiz, Tome 25 (2013) no. 3, pp. 131-146.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{AA_2013_25_3_a4,
     author = {A. I. Nazarov and R. S. Pusev},
     title = {Comparison theorems for the small ball probabilities of the {Green} {Gaussian} processes in weighted $L_2$-norms},
     journal = {Algebra i analiz},
     pages = {131--146},
     publisher = {mathdoc},
     volume = {25},
     number = {3},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AA_2013_25_3_a4/}
}
TY  - JOUR
AU  - A. I. Nazarov
AU  - R. S. Pusev
TI  - Comparison theorems for the small ball probabilities of the Green Gaussian processes in weighted $L_2$-norms
JO  - Algebra i analiz
PY  - 2013
SP  - 131
EP  - 146
VL  - 25
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AA_2013_25_3_a4/
LA  - ru
ID  - AA_2013_25_3_a4
ER  - 
%0 Journal Article
%A A. I. Nazarov
%A R. S. Pusev
%T Comparison theorems for the small ball probabilities of the Green Gaussian processes in weighted $L_2$-norms
%J Algebra i analiz
%D 2013
%P 131-146
%V 25
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AA_2013_25_3_a4/
%G ru
%F AA_2013_25_3_a4
A. I. Nazarov; R. S. Pusev. Comparison theorems for the small ball probabilities of the Green Gaussian processes in weighted $L_2$-norms. Algebra i analiz, Tome 25 (2013) no. 3, pp. 131-146. http://geodesic.mathdoc.fr/item/AA_2013_25_3_a4/

[1] Aurzada F., Ibragimov I. A., Lifshits M. A., van Zanten X., “Malye ukloneniya gladkikh statsionarnykh gaussovskikh protsessov”, Teoriya veroyatn. i ee primen., 53:4 (2008), 788–798 | DOI | MR

[2] Lifshits M. A., Gaussovskie sluchainye funktsii, TViMS, Kiev, 1995 | Zbl

[3] Nazarov A. I., “O tochnoi konstante v asimptotike malykh uklonenii v $L_2$-norme nekotorykh gaussovskikh protsessov”, Probl. mat. anal., 26, Tamara Rozhkovskaya, Novosibirsk, 2003, 179–214

[4] Nazarov A. I., Pusev R. S., “Tochnaya asimptotika malykh uklonenii v $L_2$-norme s vesom dlya nekotorykh gaussovskikh protsessov”, Zap. nauch. semin. POMI, 364, 2009, 166–199 | MR

[5] Naimark M. A., Lineinye differentsialnye operatory, 2-e izd., Nauka, M., 1969 | MR

[6] Nikitin Ya. Yu., Pusev R. S., “Tochnaya asimptotika malykh uklonenii dlya ryada brounovskikh funktsionalov”, Teoriya veroyatn. i ee primen., 57:1 (2012), 98–123 | DOI

[7] Pusev R. S., “Asimptotika malykh uklonenii v vesovoi kvadratichnoi norme dlya polei i protsessov Materna”, Teoriya veroyatn. i ee primen., 55:1 (2010), 187–195 | DOI | MR

[8] Pusev R. S., “Asimptotika malykh uklonenii protsessov Bogolyubova v kvadratichnoi norme”, Teor. i mat. fiz., 165:1 (2010), 134–144 | DOI | Zbl

[9] Sankovich D. P., “Gaussovy funktsionalnye integraly i gibbsovskie ravnovesnye srednie”, Teor. i mat. fiz., 119:2 (1999), 345–352 | DOI | MR | Zbl

[10] Sankovich D. P., “Funktsionalnyi integral Bogolyubova”, Tr. Mat. in-ta RAN, 251, 2005, 223–256 | MR | Zbl

[11] Titchmarsh E., Teoriya funktsii, 2-e izd., Nauka, M., 1980 | MR | Zbl

[12] Fedoryuk M. V., Asimptoticheskie metody dlya lineinykh obyknovennykh differentsialnykh uravnenii, 2-e izd., Librokom, M., 2009

[13] Shkalikov A. A., “Kraevye zadachi dlya obyknovennykh differentsialnykh uravnenii s parametrom v granichnykh usloviyakh”, Tr. semin. im. I. G. Petrovskogo, 9, 1983, 190–229 | MR | Zbl

[14] Dunker T., Lifshits M. A., Linde W., “Small deviations of sums of independent variables”, High dimensional probability (Oberwolfach, 1996), Progr. Probab., 43, Birkhäuser, Boston, 1998, 59–74 | MR | Zbl

[15] Ferraty F., Vieu Ph., Nonparametric functional data analysis, Springer, Berlin, 2006 | MR | Zbl

[16] Gao F., Hannig, J., Torcaso T., “Integrated Brownian motions and exact $L_2$-small balls”, Ann. Probab., 31 (2003), 1320–1337 | DOI | MR | Zbl

[17] Gao F., Hannig J., Torcaso, T., “Comparison theorems for small deviations of random series”, Electron. J. Probab., 8 (2003), 21, 17 pp. | MR

[18] Lachal A., “Bridges of certain Wiener integrals. Prediction properties, relation with polynomial interpolation and differential equations. Application to goodness-of-fit testing”, Limit theorems in probability and statistics, Bolyai Math. Studies X (Balatonlelle, Hungary, 1999), v. II, Budapest, 2002, 273–323 | MR | Zbl

[19] Li W. V., “Comparison results for the lower tail of Gaussian seminorms”, J. Theoret. Probab., 5 (1992), 1–31 | DOI | MR

[20] Li W. V., Shao Q.-M., “Gaussian processes: inequalities, small ball probabilities and applications”, Stochastic Processes: Theory and Methods, Handbook of Statist., 19, North-Holland, Amsterdam, 2001, 533–597 | DOI | MR | Zbl

[21] Lifshits M. A., “Asymptotic behavior of small ball probabilities”, Probability Theory and Mathematical Statistics, Proc. Seventh Intern. Vilnius Conf., TEV, Vilnius, 1999, 453–468 | Zbl

[22] Lifshits M. A., Bibliography on small deviation probabilities, available at http://www.proba.jussieu.fr/pageperso/smalldev/biblio.pdf

[23] Matérn B., Spatial Variation, Springer, Berlin, 1986 | MR | Zbl

[24] Nazarov A. I., “Exact $L_2$-small ball asymptotics of Gaussian processes and the spectrum of boundary-value problems”, J. Theoret. Probab., 22 (2009), 640–665 | DOI | MR | Zbl

[25] Nazarov A., “Log-level comparison principle for small ball probabilities”, Statist. Probab. Lett., 79 (2009), 481–486 | DOI | MR | Zbl

[26] Nazarov A. I., Nikitin Ya. Yu., “Exact $L_2$-small ball behavior of integrated Gaussian processes and spectral asymptotics of boundary value problems”, Probab. Theory Related Fields, 129 (2004), 469–494 | DOI | MR | Zbl

[27] Slepian D., “First passage time for a particular Gaussian process”, Ann. Math. Stat., 32 (1961), 610–612 | DOI | MR | Zbl

[28] van der Vaart A. W., van Zanten H., “Rates of contraction of posterior distributions based on Gaussian process priors”, Ann. Statist., 36 (2008), 1435–1463 | DOI | MR | Zbl