Local smoothness of an analytic function compared to the smoothness of its modulus
Algebra i analiz, Tome 25 (2013) no. 3, pp. 52-85.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{AA_2013_25_3_a1,
     author = {A. V. Vasin and S. V. Kislyakov and A. N. Medvedev},
     title = {Local smoothness of an analytic function compared to the smoothness of its modulus},
     journal = {Algebra i analiz},
     pages = {52--85},
     publisher = {mathdoc},
     volume = {25},
     number = {3},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AA_2013_25_3_a1/}
}
TY  - JOUR
AU  - A. V. Vasin
AU  - S. V. Kislyakov
AU  - A. N. Medvedev
TI  - Local smoothness of an analytic function compared to the smoothness of its modulus
JO  - Algebra i analiz
PY  - 2013
SP  - 52
EP  - 85
VL  - 25
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AA_2013_25_3_a1/
LA  - ru
ID  - AA_2013_25_3_a1
ER  - 
%0 Journal Article
%A A. V. Vasin
%A S. V. Kislyakov
%A A. N. Medvedev
%T Local smoothness of an analytic function compared to the smoothness of its modulus
%J Algebra i analiz
%D 2013
%P 52-85
%V 25
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AA_2013_25_3_a1/
%G ru
%F AA_2013_25_3_a1
A. V. Vasin; S. V. Kislyakov; A. N. Medvedev. Local smoothness of an analytic function compared to the smoothness of its modulus. Algebra i analiz, Tome 25 (2013) no. 3, pp. 52-85. http://geodesic.mathdoc.fr/item/AA_2013_25_3_a1/

[1] Bomash G. Ya., “Mnozhestva pika dlya analiticheskikh klassov Gëldera”, Zap. nauch. semin. LOMI, 157, 1987, 129–136 | MR | Zbl

[2] Brennan J., “Approximation in the mean by polynomials on non Caratheodory domains”, Ark. Mat., 15:1 (1977), 117–168 | DOI | MR | Zbl

[3] Campanato S., “Proprieta di holderianita di alcune classi di funzioni”, Ann. Scoula Norm. Sup. Pisa Cl. Sci. (3), 17 (1963), 175–188 | MR | Zbl

[4] Dyakonov K. M., “The moduli of holomorphic functions in Lipschitz spaces”, Michigan Math. J., 44 (1997), 139–147 | DOI | MR | Zbl

[5] DeVore R. A., Sharpley R. C., Maximal functions measuring smoothness, Mem. Amer. Math. Soc., 47, no. 293, 1984 | MR

[6] Khavin V. P., “Obobschenie teoremy Privalova–Zigmunda o module nepreryvnosti analiticheskoi funktsii”, Izv. AN ArmSSR. Cer. mat., 6 (1971), 252–258, 265–287 | Zbl

[7] Khavin V. P., Shamoyan F. A., “Analiticheskie funktsii s lipshitsevym modulem granichnykh znachenii”, Zap. nauch. semin. LOMI, 19, 1970, 237–239 | MR | Zbl

[8] Hoffman K., Banach spaces of analytic functions, Prentice Hall, Engelewood Cliffs, NJ, 1962 | MR | Zbl

[9] Kislyakov S., Kruglyak N., Extremal problems in interpolation theory, Whitney–Besicovitch coverings, and singular integrals, Monografie Matematyczne, 74, Birkhäuser, Basel, 2013 | MR | Zbl

[10] Meyers G. N., “Mean oscillation over cubes and Hölder continuity”, Proc. Amer. Math. Soc., 15 (1964), 717–721 | MR | Zbl

[11] Shirokov N. A., Analytic functions smooth up to the boundary, Lecture Notes in Math., 1312, Springer, Berlin, 1988 | MR | Zbl

[12] Shirokov N. A., “Dostatochnye usloviya dlya gëlderovskoi gladkosti funktsii”, Algebra i analiz, 25:3 (2013), 200–206

[13] Spanne S., “Some funciton spaces defined using the mean oscillation over cubes”, Ann. Scoula Norm. Sup. Pisa Cl. Sci. (3), 19 (1965), 593–608 | MR | Zbl

[14] Timan A. F., Teoriya priblizhenii funktsii deistvitelnogo peremennogo, Fizmatgiz, M., 1960

[15] Zigmund A., Trigonometricheskie ryady, v. 1–2, Mir, M., 1965 | MR