Voir la notice de l'article provenant de la source Math-Net.Ru
@article{AA_2013_25_1_a5, author = {N. Filonov}, title = {Weyl asymptotics for the spectrum of the {Maxwell} operator in {Lipschitz} domains of arbitrary dimension}, journal = {Algebra i analiz}, pages = {170--215}, publisher = {mathdoc}, volume = {25}, number = {1}, year = {2013}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/AA_2013_25_1_a5/} }
N. Filonov. Weyl asymptotics for the spectrum of the Maxwell operator in Lipschitz domains of arbitrary dimension. Algebra i analiz, Tome 25 (2013) no. 1, pp. 170-215. http://geodesic.mathdoc.fr/item/AA_2013_25_1_a5/
[1] Alekseev A. B., Spektralnaya asimptotika ellipticheskikh kraevykh zadach s razreshimymi svyazyami, Kand. dis., LGU, L., 1977
[2] Alekseev A. B., Birman M. Sh., “Asimptotika spektra ellipticheskikh granichnykh zadach s razreshimymi svyazyami”, Dokl. AN SSSR, 230:3 (1976), 505–507 | MR | Zbl
[3] Alekseev A. B., Birman M. Sh., Filonov N. D., “Asimptotika spektra odnoi “negladkoi” variatsionnoi zadachi s razreshimoi svyazyu”, Algebra i analiz, 18:5 (2006), 1–22 | MR | Zbl
[4] Birman M. Sh., Koplienko L. S., Solomyak M. Z., “Otsenki spektra raznosti drobnykh stepenei samosopryazhennykh operatorov”, Izv. vuzov. Mat., 1975, no. 3(154), 3–10 | MR | Zbl
[5] Birman M. Sh., Filonov N. D., “Weyl asymptotics of the spectrum of the Maxwell operator with non-smooth coefficients in Lipschitz domains”, Nonlinear Equations and Spectral Theory, Amer. Math. Soc. Transl. Ser. 2, 220, Amer. Math. Soc., Providence, RI, 2007, 27–44 | MR | Zbl
[6] Birman M. Sh., Solomyak M. Z., Spektralnaya teoriya samosopryazhennykh operatorov v gilbertovom prostranstve, 2-e izd., Lan, SPb., 2010
[7] Birman M. Sh., Solomyak M. Z., “Spektralnaya asimptotika negladkikh ellipticheskikh operatorov. II”, Tr. Mosk. mat. o-va, 28, 1973, 3–34 | MR | Zbl
[8] Birman M. Sh., Solomyak M. Z., “Kolichestvennyi analiz v teoremakh vlozheniya Soboleva i prilozheniya k spektralnoi teorii”, Desyataya mat. shkola, In-t mat. AN USSR, Kiev, 1974, 5–189 | MR
[9] Birman M. Sh., Solomyak M. Z., “Operator Maksvella v oblastyakh s negladkoi granitsei”, Sib. mat. zh., 28:1 (1987), 23–36 | MR | Zbl
[10] Birman M. Sh., Solomyak M. Z., “Veilevskaya asimptotika spektra operatora Maksvella dlya oblastei s lipshitsevoi granitsei”, Vestn. Leningr. un-ta. Ser. 1, 1987, no. 3, 23–28 | MR | Zbl
[11] Birman M. Sh., Solomyak M. Z., “Samosopryazhennyi operator Maksvella v proizvolnykh oblastyakh”, Algebra i analiz, 1:1 (1989), 96–110 | MR | Zbl
[12] Bogovskii M. E., “Reshenie nekotorykh zadach vektornogo analiza, svyazannykh s operatorami $\operatorname{div}$ i $\operatorname{grad}$”, Tr. semin. S. L. Soboleva, 1, 1980, 5–40 | MR
[13] Bourgain J., Brezis H., “On the equation $\operatorname{div}Y=f$ and application to control of phases”, J. Amer. Math. Soc., 16 (2003), 393–426 | DOI | MR | Zbl
[14] Calderón A., Zygmund A., “On singular integrals”, Amer. J. Math., 78 (1956), 289–309 | DOI | MR | Zbl
[15] Demchenko M. N., Filonov N. D., “Spectral asymptotics of the Maxwell operator on Lipschitz manifolds with boundary”, Spectral Theory of Differential Operators, Amer. Math. Soc. Transl. Ser. 2, 225, Amer. Math. Soc., Providence, RI, 2008, 73–90 | MR | Zbl
[16] Filonov N., “Ob ogranichennom reshenii uravneniya $\operatorname{div}u=f$ v ploskikh oblastyakh”, Tr. S.-Peterburg. mat. o-va, 6, 1998, 231–241 | MR
[17] Friedrichs K. O., “Differential forms on Riemannian manifolds”, Comm. Pure Appl. Math., 8 (1955), 551–590 | DOI | MR | Zbl
[18] Goldshtein V. M., Kuzminov V. I., Shvedov I. A., “Differentsialnye formy na lipshitsevom mnogoobrazii”, Sib. mat. zh., 23:2 (1982), 16–30 | MR
[19] Khermander L., Analiz lineinykh differentsialnykh operatorov s chastnymi proizvodnymi, v. 3, Mir, M., 1987 | MR
[20] Jawerth B., Mitrea M., “Higher-dimensional electromagnetic scattering theory on $C^1$ and Lipschitz domains”, Amer. J. Math., 117 (1995), 929–963 | DOI | MR | Zbl
[21] Ladyzhenskaya O. A., Uraltseva N. N., Lineinye i kvazilineinye uravneniya ellipticheskogo tipa, Nauka, M., 1973 | MR
[22] Leis R., Initial-boundary value problems in mathematical physics, B. G. Teubner, Stutgart; J. Wiley and Sons, Ltd., Chichester, 1986 | MR | Zbl
[23] McLean W., Strongly elliptic systems and boundary integral equations, Cambridge Univ. Press, Cambridge, 2000 | MR | Zbl
[24] Mitrea M., “Sharp Hodge decompositions, Maxwell's equations, and vector Poisson problems on nonsmooth, three-dimensional Riemannian manifolds”, Duke Math. J., 125:3 (2004), 467–547 | DOI | MR | Zbl
[25] Picard R., “An elementary proof for a compact imbedding result in generalized electromagnetic theory”, Math. Z., 187 (1984), 151–164 | DOI | MR | Zbl
[26] Picard R., Weck N., Witsch K.-J., “Time-harmonic Maxwell equations in the exterior of perfectly conducting, irregular obstacles”, Analysis (Munich), 21 (2001), 231–263 | MR | Zbl
[27] Safarov Yu. G., “Ob asimptotike spektra operatora Maksvella”, Zap. nauch. semin. LOMI, 127, 1983, 169–180 | MR | Zbl
[28] Veniaminov N. A., “Otsenka ostatka veilevskoi asimptotiki spektra operatora Maksvella v lipshitsevykh oblastyakh”, Probl. mat. anal., 47, Novosibirsk, 2010, 43–58 | MR | Zbl
[29] Weber C., “Regularity theorems for Maxwell's equations”, Math. Methods Appl. Sci., 3 (1981), 523–536 | DOI | MR | Zbl
[30] Weck N., “Maxwell's boundary value problem on Riemannian manifolds with nonsmooth boundaries”, J. Math. Anal. Appl., 46 (1974), 410–437 | DOI | MR | Zbl
[31] Weyl H., “Über das Spectrum der Hohlraumstrahlung”, J. Reine Angew. Math., 141 (1912), 163–181 | Zbl
[32] Weyl H., “Die natürlichen Randwertaufgaben im Aussenraum für Strahlungsfelder beliebiger Dimension und beliebiger Ranges”, Math. Z., 56 (1952), 105–119 | DOI | MR | Zbl