The Maxwell system in waveguides with several cylindrical ends
Algebra i analiz, Tome 25 (2013) no. 1, pp. 94-155.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{AA_2013_25_1_a3,
     author = {B. A. Plamenevskiǐ and A. S. Poretskiǐ},
     title = {The {Maxwell} system in waveguides with several cylindrical ends},
     journal = {Algebra i analiz},
     pages = {94--155},
     publisher = {mathdoc},
     volume = {25},
     number = {1},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AA_2013_25_1_a3/}
}
TY  - JOUR
AU  - B. A. Plamenevskiǐ
AU  - A. S. Poretskiǐ
TI  - The Maxwell system in waveguides with several cylindrical ends
JO  - Algebra i analiz
PY  - 2013
SP  - 94
EP  - 155
VL  - 25
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AA_2013_25_1_a3/
LA  - ru
ID  - AA_2013_25_1_a3
ER  - 
%0 Journal Article
%A B. A. Plamenevskiǐ
%A A. S. Poretskiǐ
%T The Maxwell system in waveguides with several cylindrical ends
%J Algebra i analiz
%D 2013
%P 94-155
%V 25
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AA_2013_25_1_a3/
%G ru
%F AA_2013_25_1_a3
B. A. Plamenevskiǐ; A. S. Poretskiǐ. The Maxwell system in waveguides with several cylindrical ends. Algebra i analiz, Tome 25 (2013) no. 1, pp. 94-155. http://geodesic.mathdoc.fr/item/AA_2013_25_1_a3/

[1] Dzhekson Dzh., Klassicheskaya elektrodinamika, Mir, M., 1965

[2] Vainshtein L. A., Elektromagnitnye volny, Radio i svyaz, M., 1988

[3] Gudovich I. S., Krein S. G., Kraevye zadachi dlya pereopredelennykh sistem uravnenii v chastnykh proizvodnykh, Differentsialnye uravneniya i ikh primeneniya, Tr. semin., 9, In-t fiz. i mat. AN Lit.SSR, Vilnyus, 1974 | Zbl

[4] Nazarov S. A., Plamenevskii B. A., Ellipticheskie zadachi v oblastyakh s kusochno gladkoi granitsei, Nauka, M., 1991

[5] Vainshtein L. A., Teoriya difraktsii i metod faktorizatsii, Sov. Radio, M., 1966

[6] Mittra R., Li S., Analiticheskie metody teorii volnovodov, Mir, M., 1974 | Zbl

[7] Nefedov E. I., Fialkovskii A. T., Asimptoticheskaya teoriya difraktsii elektromagnitnykh voln na konechnykh strukturakh, Nauka, M., 1972

[8] Krasnushkin P. E., Moiseev E. I., “O vozbuzhdenii vynuzhdennykh kolebanii v sloistom radiovolnovode”, Dokl. AN SSSR, 264:5 (1982), 1123–1127 | MR

[9] Bogolyubov A. N., Delitsyn A. L., Sveshnikov A. G., “O zadache vozbuzhdeniya volnovoda s neodnorodnym zapolneniem”, Zh. vychisl. mat. i mat. fiz., 39:11 (1999), 1869–1888 | MR | Zbl

[10] Bogolyubov A. N., Delitsyn A. L., Sveshnikov A. G., “Ob usloviyakh razreshimosti zadachi vozbuzhdeniya radiovolnovoda”, Dokl. AN SSSR, 370:4 (2000), 453–456 | MR | Zbl

[11] Vasilev A. N., Klassicheskaya elektrodinamika, Kratkii kurs lektsii, BKhV-Peterburg, SPb., 2010

[12] Agranovich M. S., Vishik M. I., “Ellipticheskie zadachi s parametrom i parabolicheskie zadachi obschego vida”, Uspekhi mat. nauk, 19:3 (1964), 53–161 | MR | Zbl

[13] Gokhberg I. Ts., Sigal E. I., “Operatornoe obobschenie teoremy o logarifmicheskom vychete i teoremy Rushe”, Mat. cb., 84(126):4 (1971), 607–629 | MR | Zbl

[14] Filonov N. D., “Ob odnom neravenstve na sobstvennye chisla zadach Dirikhle i Neimana dlya operatora Laplasa”, Algebra i analiz, 16:2 (2004), 172–176 | MR | Zbl

[15] Lions Zh.-L., Madzhenes E., Neodnorodnye granichnye zadachi i ikh prilozheniya, Mir, M., 1971 | Zbl