Voir la notice de l'article provenant de la source Math-Net.Ru
@article{AA_2013_25_1_a1, author = {M. I. Isaev and R. G. Novikov}, title = {Stability estimates for recovering the potential by the impedance boundary map}, journal = {Algebra i analiz}, pages = {37--63}, publisher = {mathdoc}, volume = {25}, number = {1}, year = {2013}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/AA_2013_25_1_a1/} }
M. I. Isaev; R. G. Novikov. Stability estimates for recovering the potential by the impedance boundary map. Algebra i analiz, Tome 25 (2013) no. 1, pp. 37-63. http://geodesic.mathdoc.fr/item/AA_2013_25_1_a1/
[1] Alessandrini G., “Stable determination of conductivity by boundary measurements”, Appl. Anal., 27 (1988), 153–172 | DOI | MR | Zbl
[2] Alessandrini G., Vessella S., “Lipschitz stability for the inverse conductivity problem”, Adv. in Appl. Math., 35:2 (2005), 207–241 | DOI | MR | Zbl
[3] Beals R., Coifman R., “Multidimensional inverse scatterings and nonlinear partial differential equations”, Pseudodifferential Operators and Applications (Notre Dame, Ind., 1984), Proc. Sympos. Pure Math., 43, Amer. Math. Soc., Providence, RI, 1985, 45–70 | DOI | MR
[4] Begehr H., Vaitekhovich T., “Some harmonic Robin functions in the complex plane”, Adv. Pure Appl. Math., 1 (2010), 19–34 | MR | Zbl
[5] Bukhgeim A. L., “Recovering a potential from Cauchy data in the two-dimensional case”, J. Inverse Ill-Posed Probl., 16:1 (2008), 19–33 | MR | Zbl
[6] Calderón A.-P., “On an inverse boundary problem”, Seminar on Numerical Analysis and its Applications to Continuum Physics (Rio de Janeiro, 1980), Soc. Brasil. Mat., Rio de Janeiro, 1980, 65–73 | MR
[7] Druskin V. L., “The unique solution of the inverse problem in electrical surveying and electrical well logging for piecewise-constant conductivity”, Physics of the Solid Earth, 18 (1982), 51–53
[8] Faddeev L. D., “Rastuschie resheniya uravneniya Shrëdingera”, Dokl. AN SSSR, 165:3 (1965), 514–517 | Zbl
[9] Faddeev L. D., “Obratnaya zadacha kvantovoi teorii rasseyaniya. II”, Itogi nauki i tekhn. Ser. Sovrem. probl. mat., 3, VINITI, M., 1974, 93–180 | MR | Zbl
[10] Gel'fand I. M., “Some aspects of functional analysis and algebra”, Proc. of the International Congress of Mathematicians (Amsterdam, 1954), v. 1, North-Holland Publ. Co., Amsterdam, 1957, 253–276 | MR
[11] Gesztesy F., Mitrea M., “Robin-to-Robin maps and Krein-type resolvent formulas for Schrödinger operators on bounded Lipschitz domains”, Modern Analysis and Applications, v. 2, Oper. Theory Adv. Appl., 191, Birkhäuser Verlag, Basel, 2009, 81–113 | MR | Zbl
[12] Novikov R. G., Khenkin G. M., “$\bar\partial$-uravnenie v mnogomernoi obratnoi zadache rasseyaniya”, Uspekhi mat. nauk, 42:3 (1987), 93–152 | MR | Zbl
[13] Isaev M. I., “Exponential instability in the Gel'fand inverse problem on the energy intervals”, J. Inverse Ill-Posed Probl., 19:3 (2011), 453–472 | MR
[14] Isaev M. I., Novikov R. G., Reconstruction of a potential from the impedance boundary map, arXiv: 1204.0076
[15] Kohn R., Vogelius M., “Determining conductivity by boundary measurements. II. Interior results”, Comm. Pure Appl. Math., 38:5 (1985), 643–667 | DOI | MR | Zbl
[16] Lanzani L., Shen Z., “On the Robin boundary condition for Laplace's equation in Lipschitz domains”, Comm. Partial Differential Equations, 29 (2004), 91–109 | DOI | MR | Zbl
[17] Lavine R. B., Nachman A. I., “On the inverse scattering transform of the $n$-dimensional Schrödinger operator”, Topics in Soliton Theory and Exactly Solvable Nonlinear Equations (Oberwolfach, 1986), World Sci. Publ., Singapore, 1987, 33–44 | MR
[18] Mandache N., “Exponential instability in an inverse problem for the Schrödinger equation”, Inverse Problems, 17 (2001), 1435–1444 | DOI | MR | Zbl
[19] Nachman A., “Global uniqueness for a two-dimensional inverse boundary value problem”, Ann. of Math. (2), 143 (1996), 71–96 | DOI | MR | Zbl
[20] Novikov R. G., “Mnogomernaya obratnaya spektralnaya zadacha dlya uravneniya $-\Delta\psi+(v(x)-Eu(x))\psi=0$”, Funkts. anal. i ego pril., 22:4 (1988), 11–22 | MR | Zbl
[21] Novikov R. G., “$\bar\partial$-method with nonzero background potential. Application to inverse scattering for the two-dimensional acoustic equation”, Comm. Partial Differential Equations, 21:3–4 (1996), 597–618 | DOI | MR | Zbl
[22] Novikov R. G., “Priblizhennoe reshenie obratnoi zadachi kvantovoi teorii rasseyaniya pri fiksirovannoi energii v razmernosti 2”, Tr. Mat. in-ta RAN, 225, 1999, 301–318 | MR | Zbl
[23] Novikov R. G., “Formulae and equations for finding scattering data from the Dirichlet-to-Neumann map with nonzero background potential”, Inverse Problems, 21 (2005), 257–270 | DOI | MR | Zbl
[24] Novikov R. G., “On non-overdetermined inverse scattering at zero energy in three dimensions”, Ann. Scuola Norm. Super. Pisa Cl. Sci. (5), 5 (2006), 279–328 | MR | Zbl
[25] Novikov R. G., “New global stability estimates for the Gel'fand–Calderón inverse problem”, Inverse Problems, 27:1 (2011), 015001, 21 pp. ; arXiv: 1002.0153 | DOI | MR | Zbl
[26] Novikov R. G., Novikova N. N., “On stable determination of potential by boundary measurements”, Mathematical Methods for Imaging and Inverse Problems, ESAIM Proc., 26, EDP Sci., Les Ulis, 2009, 94–99 | DOI | MR
[27] Novikov R., Santacesaria M., “A global stability estimate for the Gel'fand–Calderón inverse problem in two dimensions”, J. Inverse Ill-Posed Probl., 18:7 (2010), 765–785 ; arXiv: 1008.4888 | MR
[28] Novikov R., Santacesaria M., “Global uniqueness and reconstruction for the multi-channel Gel'fand–Calderón inverse problem in two dimensions”, Bull. Sci. Math., 135:5 (2011), 421–434 | DOI | MR | Zbl
[29] Rondi L., “A remark on a paper by G. Alessandrini and S. Vessella”, Adv. in Appl. Math., 36:1 (2006), 67–69 | DOI | MR | Zbl
[30] Santacesaria M., “Global stability for the multi-channel Gel'fand–Calderón inverse problem in two dimensions”, Bull. Sci. Math., 136:7 (2012), 731–744 ; arXiv: 1102.5175 | DOI | MR | Zbl
[31] Santacesaria M., “New global stability estimates for the Calderón inverse problem in two dimensions”, J. Inst. Math. Jussieu, 12:3 (2013), 553–569 ; arXiv: 1110.0335 | DOI
[32] Sylvester J., Uhlmann G., “A global uniqueness theorem for an inverse boundary value problem”, Ann. of Math. (2), 125:1 (1987), 153–169 | DOI | MR | Zbl
[33] Vekua I. N., Obobschennye analiticheskie funktsii, Nauka, M., 1988 | MR | Zbl
[34] Weder R., “Generalized limiting absorption method and multidimensional inverse scattering theory”, Math. Methods Appl. Sci., 14:7 (1991), 509–524 | DOI | MR | Zbl
[35] Palamodov V. P., Private communication, February 2011