@article{AA_2012_24_5_a6,
author = {A. V. Smirnov},
title = {Quasi-isometric embedding of the fundamental group of an orthogonal graph-manifold into a~product of metric trees},
journal = {Algebra i analiz},
pages = {165--180},
year = {2012},
volume = {24},
number = {5},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/AA_2012_24_5_a6/}
}
TY - JOUR AU - A. V. Smirnov TI - Quasi-isometric embedding of the fundamental group of an orthogonal graph-manifold into a product of metric trees JO - Algebra i analiz PY - 2012 SP - 165 EP - 180 VL - 24 IS - 5 UR - http://geodesic.mathdoc.fr/item/AA_2012_24_5_a6/ LA - ru ID - AA_2012_24_5_a6 ER -
A. V. Smirnov. Quasi-isometric embedding of the fundamental group of an orthogonal graph-manifold into a product of metric trees. Algebra i analiz, Tome 24 (2012) no. 5, pp. 165-180. http://geodesic.mathdoc.fr/item/AA_2012_24_5_a6/
[1] Behrstock J. A., Neumann W. D., “Quasi-isometric classification of graph manifold groups”, Duke Math. J., 141:2 (2008), 217–240 | DOI | MR | Zbl
[2] Burago D. Yu., Burago Yu. D., Ivanov S. V., Kurs metricheskoi geometrii, In-t kompyuter. issled., Moskva–Izhevsk, 2005, 512 pp.
[3] Buyalo S. V., Kobelskii V. L., “Obobschennye grafmnogoobraziya nepolozhitelnoi krivizny”, Algebra i analiz, 11:2 (1999), 64–87 | MR | Zbl
[4] Buyalo S. V., Schroeder V., Elements of asymptotic geometry, EMS Monogr. in Math., Europ. Math. Soc., Zurich, 2007 | MR | Zbl
[5] Gromov M., “Asymptotic invariants of infinite groups”, Geometric Group Theory (Sussex, 1991), v. 2, London Math. Soc. Lecture Note Ser., 182, Cambridge Univ. Press, Cambridge, 1993, 1–295 | MR
[6] Hume D., Sisto A., Embedding universal covers of graph manifolds in products of trees, Preprint, arXiv: 1112.0263[math.GT]
[7] Kapovich M., Leeb B., “3-manifold groups and nonpositive curvature”, Geom. Funct. Anal., 8 (1998), 841–852 | DOI | MR | Zbl
[8] Roe J., Lectures on coarse geometry, Univ. Lecture Ser., 31, Amer. Math. Soc., Providence, RI, 2003 | MR | Zbl