Voir la notice de l'article provenant de la source Math-Net.Ru
@article{AA_2012_24_5_a2, author = {V. V. Kapustin}, title = {Cauchy-type integrals and singular measures}, journal = {Algebra i analiz}, pages = {72--93}, publisher = {mathdoc}, volume = {24}, number = {5}, year = {2012}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/AA_2012_24_5_a2/} }
V. V. Kapustin. Cauchy-type integrals and singular measures. Algebra i analiz, Tome 24 (2012) no. 5, pp. 72-93. http://geodesic.mathdoc.fr/item/AA_2012_24_5_a2/
[1] Kapustin V. V., “Usrednennye volnovye operatory na singulyarnom spektre”, Funkts. anal. i ego pril., 46:2 (2012), 24–36 | MR
[2] Nikolskii N. K., Lektsii ob operatore sdviga, Nauka, M., 1980 | MR
[3] Clark D. N., “One dimensional perturbations of restricted shifts”, J. Anal. Math., 25 (1972), 169–191 | DOI | MR | Zbl
[4] Poltoratskii A. G., “Granichnoe povedenie psevdoprodolzhimykh funktsii”, Algebra i analiz, 5:2 (1993), 189–210 | MR | Zbl
[5] Sarason D., “Algebraic properties of truncated Toeplitz operators”, Oper. Matrices, 1:4 (2007), 491–526 | DOI | MR | Zbl
[6] Kapustin V. V., “O volnovykh operatorakh na singulyarnom spektre”, Zap. nauch. semin. POMI, 376, 2010, 48–63 | MR
[7] Bessonov R. V., “Volnovye operatory proshlogo i buduschego na singulyarnom spektre”, Zap. nauchn. semin. POMI, 389, 2011, 5–20
[8] Karamata J., “Über die Hardy–Littlewoodschen Umkehrungen des Abelschen Stetigkeitssatzes”, Math. Z., 32 (1930), 319–320 | DOI | MR | Zbl
[9] Kadec M. I., Pełczyński A., “Bases, lacunary sequences and complemented subspaces in the spaces $L_p$”, Studia Math., 21 (1961/1962), 161–176 | MR
[10] Kisliakov S. V., “What is needed for a 0-absolutely summing operator to be nuclear?”, Complex Analysis and Spectral Theory (Leningrad, 1979/1980), Lecture Notes in Math., 864, Springer, Berlin–New York, 1981, 336–364 | DOI | MR
[11] Aleksandrov A. B., “Kratnost granichnykh znachenii vnutrennikh funktsii”, Izv. AN Arm. SSR, 22:5 (1987), 490–503 | MR | Zbl
[12] Liaw C., Treil S., “Rank one perturbations and singular integral operators”, J. Funct. Anal., 257:6 (2009), 1947–1975 | DOI | MR | Zbl
[13] Ahern P. R., Clark D. N., “Radial limits and invariant subspaces”, Amer. J. Math., 92:2 (1970), 332–342 | DOI | MR | Zbl