Estimates for functional with a~known finite set of moments in terms of moduli of continuity and behaviour of constants in the Jackson-type inequalities
Algebra i analiz, Tome 24 (2012) no. 5, pp. 1-43.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{AA_2012_24_5_a0,
     author = {O. L. Vinogradov and V. V. Zhuk},
     title = {Estimates for functional with a~known finite set of moments in terms of moduli of continuity and behaviour of constants in the {Jackson-type} inequalities},
     journal = {Algebra i analiz},
     pages = {1--43},
     publisher = {mathdoc},
     volume = {24},
     number = {5},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AA_2012_24_5_a0/}
}
TY  - JOUR
AU  - O. L. Vinogradov
AU  - V. V. Zhuk
TI  - Estimates for functional with a~known finite set of moments in terms of moduli of continuity and behaviour of constants in the Jackson-type inequalities
JO  - Algebra i analiz
PY  - 2012
SP  - 1
EP  - 43
VL  - 24
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AA_2012_24_5_a0/
LA  - ru
ID  - AA_2012_24_5_a0
ER  - 
%0 Journal Article
%A O. L. Vinogradov
%A V. V. Zhuk
%T Estimates for functional with a~known finite set of moments in terms of moduli of continuity and behaviour of constants in the Jackson-type inequalities
%J Algebra i analiz
%D 2012
%P 1-43
%V 24
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AA_2012_24_5_a0/
%G ru
%F AA_2012_24_5_a0
O. L. Vinogradov; V. V. Zhuk. Estimates for functional with a~known finite set of moments in terms of moduli of continuity and behaviour of constants in the Jackson-type inequalities. Algebra i analiz, Tome 24 (2012) no. 5, pp. 1-43. http://geodesic.mathdoc.fr/item/AA_2012_24_5_a0/

[1] Zhuk V. V., Strukturnye svoistva funktsii i tochnost approksimatsii, L., 1984

[2] Korneichuk N. P., Tochnye konstanty v teorii priblizheniya, Nauka, M., 1987 | MR

[3] Foucart S., Kryakin Y., Shadrin A., “On the exact constant in the Jackson–Stechkin inequality for the uniform metric”, Constr. Approx., 29 (2009), 157–179 | DOI | MR | Zbl

[4] Vinogradov O. L., Zhuk V. V., “Otsenki funktsionalov s izvestnoi posledovatelnostyu momentov cherez otkloneniya srednikh tipa Steklova”, Zap. nauch. semin. POMI, 383, 2010, 5–32 | MR

[5] Vinogradov O. L., Zhuk V. V., “Skorost ubyvaniya konstant v neravenstvakh tipa Dzheksona v zavisimosti ot poryadka modulya nepreryvnosti”, Zap. nauch. semin. POMI, 383, 2010, 33–52 | MR

[6] Akhiezer N. I., Lektsii po teorii approksimatsii, Nauka, M., 1965 | MR | Zbl

[7] Stein I., Veis G., Vvedenie v garmonicheskii analiz na evklidovykh prostranstvakh, Mir, M., 1974 | Zbl

[8] Levitan B. M., Pochti-periodicheskie funktsii, GITTL, M., 1953

[9] Vinogradov O. L., “Tochnye neravenstva tipa Dzheksona dlya priblizhenii klassov svertok tselymi funktsiyami konechnoi stepeni”, Algebra i analiz, 17:4 (2005), 59–114 | MR | Zbl

[10] Vinogradov O. L., Zhuk V. V., “Otsenki funktsionalov s izvestnym konechnym naborom momentov cherez moduli nepreryvnosti vysokikh poryadkov”, Metody splain-funktsii, Ros. konf., posv. 80-letiyu so dnya rozhd. Yu. S. Zavyalova (Novosibirsk, 31 yanvarya – 2 fevralya 2011 g.), Tez. dokl., Novosibirsk, 2011, 29–30

[11] Zhuk V. V., “Polunormy i moduli nepreryvnosti vysokikh poryadkov”, Tr. S.-Peterburg. mat. ob-va, 2, 1993, 116–177 | MR | Zbl

[12] Zhuk V. V., Kuzyutin V. F., Approksimatsiya funktsii i chislennoe integrirovanie, SPbGU, SPb., 1995

[13] Zhuk V. V., Approksimatsiya periodicheskikh funktsii, LGU, L., 1982 | MR

[14] Sendov B., Popov V., Usrednennye moduli gladkosti, Mir, M., 1988 | MR

[15] Ivanov V. I., “O priblizhenii funktsii v prostranstvakh $L_p$”, Mat. zametki, 56:2 (1994), 15–40 | MR | Zbl

[16] Zhuk V. V., Pimenov S. Yu., “O normakh summ Akhiezera–Kreina–Favara”, Vestn. S.-Peterburg. un-ta. Ser. 10, 2006, no. 4, 37–47

[17] Zhuk V. V., Natanson G. I., Trigonometricheskie ryady Fure i elementy teorii approksimatsii, LGU, L., 1983 | MR

[18] Vinogradov O. L., Zhuk V. V., “Tochnye neravenstva tipa Kolmogorova dlya modulei nepreryvnosti i nailuchshikh priblizhenii trigonometricheskimi mnogochlenami i splainami”, Zap. nauch. semin. POMI, 290, 2002, 5–26 | MR | Zbl

[19] Vinogradov O. L., “Analog summ Akhiezera–Kreina–Favara dlya periodicheskikh splainov minimalnogo defekta”, Teoriya funktsii i prilozheniya, Probl. mat. anal., 25, Tamara Rozhkovskaya, Novosibirsk, 2003, 29–56

[20] Vinogradov O. L., “Tochnye neravenstva dlya priblizhenii klassov periodicheskikh svertok podprostranstvami sdvigov nechetnoi razmernosti”, Mat. zametki, 85:4 (2009), 569–584 | DOI | MR | Zbl

[21] Merlina N. I., “K voprosu o tochnykh otsenkakh dlya polunorm i nailuchshikh priblizhenii tselymi funktsiyami”, Teoriya funktsii kompleksnogo peremennogo i kraevye zadachi, Mezhvuz. sb., 3, Chuvash. gos. un-t, Cheboksary, 1979, 20–26

[22] Vinogradov O. L., Zhuk V. V., “Tochnye otsenki otklonenii lineinykh metodov priblizheniya periodicheskikh funktsii posredstvom lineinykh kombinatsii modulei nepreryvnosti razlichnykh poryadkov”, Teoriya funktsii i prilozheniya, Probl. mat. anal., 25, Tamara Rozhkovskaya, Novosibirsk, 2003, 57–97