On $\mathcal C^m$-approximability of functions by polynomial solutions of elliptic equations on compact plane sets
Algebra i analiz, Tome 24 (2012) no. 4, pp. 201-219.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{AA_2012_24_4_a8,
     author = {K. Yu. Fedorovskiy},
     title = {On $\mathcal C^m$-approximability of functions by polynomial solutions of elliptic equations on compact plane sets},
     journal = {Algebra i analiz},
     pages = {201--219},
     publisher = {mathdoc},
     volume = {24},
     number = {4},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AA_2012_24_4_a8/}
}
TY  - JOUR
AU  - K. Yu. Fedorovskiy
TI  - On $\mathcal C^m$-approximability of functions by polynomial solutions of elliptic equations on compact plane sets
JO  - Algebra i analiz
PY  - 2012
SP  - 201
EP  - 219
VL  - 24
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AA_2012_24_4_a8/
LA  - ru
ID  - AA_2012_24_4_a8
ER  - 
%0 Journal Article
%A K. Yu. Fedorovskiy
%T On $\mathcal C^m$-approximability of functions by polynomial solutions of elliptic equations on compact plane sets
%J Algebra i analiz
%D 2012
%P 201-219
%V 24
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AA_2012_24_4_a8/
%G ru
%F AA_2012_24_4_a8
K. Yu. Fedorovskiy. On $\mathcal C^m$-approximability of functions by polynomial solutions of elliptic equations on compact plane sets. Algebra i analiz, Tome 24 (2012) no. 4, pp. 201-219. http://geodesic.mathdoc.fr/item/AA_2012_24_4_a8/

[1] Balk M. B., Polyanalytic functions, Math. Res., 63, Akademie-Verlag, Berlin, 1991 | MR | Zbl

[2] Verdera J., “$C^m$-approximation by solutions of elliptic equations, and Calderon–Zygmund operators”, Duke Math. J., 55:1 (1987), 157–187 | DOI | MR | Zbl

[3] Verdera J., “Removability, capacity and approximation”, Complex Potential Theory (Montreal, PQ, 1993), NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci., 439, Kluwer Acad. Publ., Dordrecht, 1994, 419–473 | MR | Zbl

[4] Paramonov P. V., “O garmonicheskikh approksimatsiyakh v $C^1$-norme”, Mat. sb., 181:10 (1990), 1341–1365 | MR | Zbl

[5] Paramonov P. V., “$C^m$-priblizheniya garmonicheskimi polinomami na kompaktnykh mnozhestvakh v $\mathbb R^n$”, Mat. sb., 184:2 (1993), 105–128 | MR | Zbl

[6] Bitsadze A. G., Kraevye zadachi dlya ellipticheskikh uravnenii vtorogo poryadka, Nauka, M., 1966 | Zbl

[7] Paramonov P. V., “O priblizheniyakh garmonicheskimi polinomami v $C^1$-norme na kompaktakh v $\mathbf R^2$”, Izv. RAN. Ser. mat., 57:2 (1993), 113–124 | MR | Zbl

[8] Paramonov P. V., Fedorovskii K. Yu., “O ravnomernoi i $C^1$-priblizhaemosti funktsii na kompaktakh v $\mathbb R^2$ resheniyami ellipticheskikh uravnenii vtorogo poryadka”, Mat. sb., 190:2 (1999), 123–144 | DOI | MR | Zbl

[9] Fedorovskiy K. Yu., “$\mathrm C^m$-approximation by polyanalytic polynomials on compact subsets of the complex plane”, Complex Anal. Oper. Theory, 5:3 (2011), 671–681 | DOI | MR

[10] Mergelyan S. N., “Ravnomernye priblizheniya funktsii kompleksnogo peremennogo”, Uspekhi mat. nauk, 7:2 (1952), 31–122 | MR | Zbl

[11] Karmona D. D., Paramonov P. V., Fedorovskii K. Yu., “O ravnomernoi approksimatsii polianaliticheskimi mnogochlenami i zadache Dirikhle dlya bianaliticheskikh funktsii”, Mat. sb., 193:10 (2002), 75–98 | MR | Zbl

[12] Buave A., Gote P. M., Paramonov P. V., “O ravnomernoi approksimatsii $n$-analiticheskimi funktsiyami na zamknutykh mnozhestvakh v $\mathbb C$”, Izv. RAN. Ser. mat., 68:3 (2004), 15–28 | DOI | MR | Zbl

[13] Carmona J. J., Fedorovskiy K. Yu., “Conformal maps and uniform approximation by polyanalytic functions”, Selected Topics in Complex Analysis, Oper. Theory: Adv. Appl., 158, Birkhäuser Verlag, Basel, 2005, 109–130 | DOI | MR | Zbl

[14] Karmona D. D., Fedorovskii K. Yu., “O zavisimosti uslovii ravnomernoi priblizhaemosti funktsii polianaliticheskimi mnogochlenami ot poryadka polianalitichnosti”, Mat. zametki, 83:1 (2008), 32–38 | DOI | MR | Zbl

[15] Zaitsev A. B., “O ravnomernoi priblizhaemosti funktsii polinomialnymi resheniyami ellipticheskikh uravnenii vtorogo poryadka na kompaktakh v $\mathbb R^2$”, Mat. zametki, 74:1 (2003), 41–51 | DOI | MR | Zbl

[16] Zaitsev A. B., “O ravnomernoi priblizhaemosti funktsii polinomialnymi resheniyami ellipticheskikh uravnenii vtorogo poryadka na ploskikh kompaktakh”, Izv. RAN. Ser. mat., 68:6 (2004), 85–98 | DOI | MR | Zbl

[17] Zaitsev A. B., “O ravnomernoi approksimatsii polinomialnymi resheniyami ellipticheskikh uravnenii vtorogo poryadka i o sootvetstvuyuschei zadache Dirikhle”, Tr. Mat. in-ta RAN, 253, 2006, 67–80 | MR

[18] Trev Zh., Lektsii po lineinym uravneniyam v chastnykh proizvodnykh s postoyannymi koeffitsientami, Mir, M., 1965 | Zbl

[19] Smirnov S. K., Khavin V. P., “Zadachi priblizheniya i prodolzheniya dlya nekotorykh klassov vektornykh polei”, Algebra i analiz, 10:3 (1998), 133–162 | MR | Zbl

[20] Khërmander L., Analiz lineinykh differentsialnykh operatorov s chastnymi proizvodnymi, v. 1, Teoriya raspredelenii i analiz Fure, Mir, M., 1986

[21] Tarkhanov N. N., Ryad Lorana dlya reshenii ellipticheskikh sistem, Nauka, Novosibirsk, 1991 | MR | Zbl

[22] Vitushkin A. G., “Analiticheskaya emkost mnozhestv v zadachakh teorii priblizhenii”, Uspekhi mat. nauk, 22:6 (1967), 141–199 | MR | Zbl

[23] Paramonov P. V., Verdera J., “Approximation by solutions of elliptic equations on closed subsets of euclidean space”, Math. Scand., 74 (1994), 249–259 | MR | Zbl

[24] Mazalov M. Ya., “Kriterii ravnomernoi priblizhaemosti na proizvolnykh kompaktakh dlya reshenii ellipticheskikh uravnenii”, Mat. sb., 199:1 (2008), 15–46 | MR | Zbl

[25] Narasimkhan R., Analiz na deistvitelnykh i kompleksnykh mnogoobraziyakh, Mir, M., 1971