Moduli of toric tilings into bounded remainder sets and balanced words
Algebra i analiz, Tome 24 (2012) no. 4, pp. 97-136.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{AA_2012_24_4_a4,
     author = {V. G. Zhuravlev},
     title = {Moduli of toric tilings into bounded remainder sets and balanced words},
     journal = {Algebra i analiz},
     pages = {97--136},
     publisher = {mathdoc},
     volume = {24},
     number = {4},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AA_2012_24_4_a4/}
}
TY  - JOUR
AU  - V. G. Zhuravlev
TI  - Moduli of toric tilings into bounded remainder sets and balanced words
JO  - Algebra i analiz
PY  - 2012
SP  - 97
EP  - 136
VL  - 24
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AA_2012_24_4_a4/
LA  - ru
ID  - AA_2012_24_4_a4
ER  - 
%0 Journal Article
%A V. G. Zhuravlev
%T Moduli of toric tilings into bounded remainder sets and balanced words
%J Algebra i analiz
%D 2012
%P 97-136
%V 24
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AA_2012_24_4_a4/
%G ru
%F AA_2012_24_4_a4
V. G. Zhuravlev. Moduli of toric tilings into bounded remainder sets and balanced words. Algebra i analiz, Tome 24 (2012) no. 4, pp. 97-136. http://geodesic.mathdoc.fr/item/AA_2012_24_4_a4/

[1] Altman E., Gaujal B., Hordijk A., “Balanced sequences and optimal routing”, J. ACM, 47 (2000), 752–775 | DOI | MR

[2] Hecke E., “Über analytische Funktionen und die Verteilung von Zahlen mod. Eins”, Math. Sem. Hamburg. Univ., 1 (1921), 54–76 | DOI | Zbl

[3] Heinis A., “Languages under substitutions and balanced words”, J. Théor. Nombres Bordeaux, 16:1 (2004), 151–172 | DOI | MR | Zbl

[4] Knuth D., “Efficient balanced codes”, IEEE Trans. Inform. Theory, 32 (1986), 51–53 | DOI | MR | Zbl

[5] Morse M., Hedlund G. A., “Symbolic dynamics. II. Sturmian trajectories”, Amer. J. Math., 62 (1940), 1–42 | DOI | MR | Zbl

[6] Rauzy G., “Nombres algébriques et substitutions”, Bull. Soc. Math. France, 110 (1982), 147–178 | MR | Zbl

[7] Vuillon L., “Balanced words”, Bull. Belg. Math. Soc. Simon Stevin, 10 (2003), 787–805 | MR

[8] Weyl H., “Über die Gleichverteilung von Zahlen mod. Eins”, Math. Ann., 77 (1916), 313–352 | DOI | MR | Zbl

[9] Arnold V. I., Tsepnye drobi, MTsNMO, M., 2001

[10] Zhuravlev V. G., “Razbieniya Rozi i mnozhestva ogranichennogo ostatka na tore”, Zap. nauch. semin. POMI, 322, 2005, 83–106 | MR | Zbl

[11] Zhuravlev V. G., “Mnogomernaya teorema Gekke o raspredelenii drobnykh chastei”, Algebra i analiz, 24:1 (2012), 95–130

[12] Zhuravlev V. G., “Perekladyvayuschiesya toricheskie razvertki i mnozhestva ogranichennogo ostatka”, Zap. nauch. semin. POMI, 392, 2011, 95–145 | MR