Voir la notice de l'article provenant de la source Math-Net.Ru
@article{AA_2012_24_3_a7, author = {A. L. Chistov}, title = {Estimating the power of a~system of equations that determines a~variety of reducible polynomials}, journal = {Algebra i analiz}, pages = {199--222}, publisher = {mathdoc}, volume = {24}, number = {3}, year = {2012}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/AA_2012_24_3_a7/} }
A. L. Chistov. Estimating the power of a~system of equations that determines a~variety of reducible polynomials. Algebra i analiz, Tome 24 (2012) no. 3, pp. 199-222. http://geodesic.mathdoc.fr/item/AA_2012_24_3_a7/
[1] Burbaki N., Kommutativnaya algebra, Mir, M., 1971 | MR
[2] Chistov A. L., “Algoritm polinomialnoi slozhnosti dlya razlozheniya mnogochlenov i nakhozhdenie komponent mnogoobraziya v subeksponentsialnoe vremya”, Zap. nauch. semin. LOMI, 137, 1984, 124–188 | MR | Zbl
[3] Chistov A. L., “Dvazhdy eksponentsialnaya nizhnyaya otsenka na stepen sistemy obrazuyuschikh polinomialnogo prostogo ideala”, Algebra i analiz, 20:6 (2008), 186–213 | MR
[4] Chistov AL., A deterministic polynomial-time algorithm for the first Bertini theorem, Preprint, St. Petersburg Math. Soc., 2004 http://www.mathsoc.spb.ru/preprint/2004/index.html
[5] Chistov A. L., Fournier H., Gurvits L., Koiran P., “Vandermonde matrices, NP-completeness, and transversal subspaces”, Found. Comput. Math., 3:4 (2003), 421–427 | DOI | MR | Zbl
[6] Lenstra A. K., Lenstra H. W., Lovász L., “Factoring polynomials with rational coefficients”, Math. Ann., 261 (1982), 515–534 | DOI | MR | Zbl
[7] Zariski O., “Pencils on an algebraic variety and a new proof of a theorem of Bertini”, Trans. Amer. Math. Soc., 50 (1941), 48–70 | DOI | MR | Zbl