On tight spherical designs
Algebra i analiz, Tome 24 (2012) no. 3, pp. 163-171.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $X$ be a tight $t$-design of dimension $n$, and let $t=5$ or $t=7$ (the open cases). An investigation of the lattice generated by $X$ by using arithmetic theory of quadratic forms allows one to exclude infinitely many values of $n$.
Keywords: tight $t$-design, quadratic form.
@article{AA_2012_24_3_a5,
     author = {G. Nebe and B. Venkov},
     title = {On tight spherical designs},
     journal = {Algebra i analiz},
     pages = {163--171},
     publisher = {mathdoc},
     volume = {24},
     number = {3},
     year = {2012},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/AA_2012_24_3_a5/}
}
TY  - JOUR
AU  - G. Nebe
AU  - B. Venkov
TI  - On tight spherical designs
JO  - Algebra i analiz
PY  - 2012
SP  - 163
EP  - 171
VL  - 24
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AA_2012_24_3_a5/
LA  - en
ID  - AA_2012_24_3_a5
ER  - 
%0 Journal Article
%A G. Nebe
%A B. Venkov
%T On tight spherical designs
%J Algebra i analiz
%D 2012
%P 163-171
%V 24
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AA_2012_24_3_a5/
%G en
%F AA_2012_24_3_a5
G. Nebe; B. Venkov. On tight spherical designs. Algebra i analiz, Tome 24 (2012) no. 3, pp. 163-171. http://geodesic.mathdoc.fr/item/AA_2012_24_3_a5/

[1] Bannai E., Damerell R. M., “Tight spherical designs. I”, J. Math. Soc. Japan, 31 (1979), 199–207 | DOI | MR | Zbl

[2] Bannai E., “On tight spherical designs”, J. Combin. Theory Ser. A, 26 (1979), 38–47 | DOI | MR | Zbl

[3] Bannai E., Damerell R. M., “Tight spherical designs. II”, J. London Math. Soc. (2), 21 (1980), 13–30 | DOI | MR | Zbl

[4] Bannai E., Munemasa A., Venkov B., “The nonexistence of certain tight spherical designs”, Algebra i analiz, 16:4 (2004), 1–23 | MR | Zbl

[5] Delsarte P., Goethals J. M., Seidel J. J., “Spherical codes and designs”, Geom. Dedicata, 6 (1977), 363–388 | DOI | MR | Zbl

[6] Scharlau W., Quadratic and Hermitian forms, Grundlehren Math. Wiss., 270, Springer-Verlag, Berlin, 1985 | DOI | MR | Zbl

[7] Venkov B., Réseaux et designs sphériques, Monogr. Enseign. Math., 37, Enseignement Math., Geneva, 2001 | MR