The stable Calabi--Yau dimension of preprojective algebras of type $\mathbf L_n$
Algebra i analiz, Tome 24 (2012) no. 3, pp. 148-162.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{AA_2012_24_3_a4,
     author = {S. O. Ivanov},
     title = {The stable {Calabi--Yau} dimension of preprojective algebras of type $\mathbf L_n$},
     journal = {Algebra i analiz},
     pages = {148--162},
     publisher = {mathdoc},
     volume = {24},
     number = {3},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AA_2012_24_3_a4/}
}
TY  - JOUR
AU  - S. O. Ivanov
TI  - The stable Calabi--Yau dimension of preprojective algebras of type $\mathbf L_n$
JO  - Algebra i analiz
PY  - 2012
SP  - 148
EP  - 162
VL  - 24
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AA_2012_24_3_a4/
LA  - ru
ID  - AA_2012_24_3_a4
ER  - 
%0 Journal Article
%A S. O. Ivanov
%T The stable Calabi--Yau dimension of preprojective algebras of type $\mathbf L_n$
%J Algebra i analiz
%D 2012
%P 148-162
%V 24
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AA_2012_24_3_a4/
%G ru
%F AA_2012_24_3_a4
S. O. Ivanov. The stable Calabi--Yau dimension of preprojective algebras of type $\mathbf L_n$. Algebra i analiz, Tome 24 (2012) no. 3, pp. 148-162. http://geodesic.mathdoc.fr/item/AA_2012_24_3_a4/

[1] Białkowski J., Erdmann K., Skowroński A., “Deformed preprojective algebras of generalized Dynkin type”, Trans. Amer. Math. Soc., 359 (2007), 2625–2650 | DOI | MR | Zbl

[2] Erdmann K., Skowroński A., “The stable Calabi–Yau dimension of tame symmetric algebras”, J. Math. Soc. Japan, 58 (2006), 97–123 | DOI | MR

[3] Bondal A. I., Kapranov M. M., “Predstavimye funktory, funktory Serra i perestroiki”, Izv. AN SSSR. Ser. mat., 53:6 (1989), 1183–1205 | MR | Zbl

[4] Keller B., “Calabi–Yau triangulated categories”, Trends in Representation Theory of Algebras and Related Topics, EMS Ser. Congr. Rep., ed. A. Skowroński, Eur. Math. Soc., Zürich, 2008, 467–489 | MR | Zbl

[5] Kontsevich M., Triangulated categories and geometry, Course at the École Normale Supérieure, Paris, 1998, Notes taken by J. Bellaiche, J.-F. Dat, I. Marin, G. Racinet and H. Randriambololona

[6] Happel D., Preiser U., Ringel C. M., “Binary polyhedral groups and Euclidean diagrams”, Manuscripta Math., 31 (1980), 317–329 | DOI | MR | Zbl

[7] Juan E. A., The Hochschild cohomology ring of preprojective algebras of type $\mathbf L_n$, arXiv: 1010.2790v1

[8] Auslander M., Reiten I., Smalø S. O., Representation theory of Artin algebras, Cambridge Stud. in Adv. Math., 36, Cambridge Univ. Press, 1995 | MR | Zbl

[9] Heller A., “The loop-space functor in homological algebra”, Trans. Amer. Math. Soc., 96 (1960), 382–394 | DOI | MR | Zbl

[10] Happel D., “On the derived category of a finite-dimensional algebra”, Comment. Math. Helv., 62:3 (1987), 339–389 | DOI | MR | Zbl

[11] Kash F., Moduli i koltsa, Mir, M., 1981 | MR