Interpolation inequalities for maximal functions measuring smoothness
Algebra i analiz, Tome 24 (2012) no. 2, pp. 192-229.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{AA_2012_24_2_a6,
     author = {E. E. Lokharu},
     title = {Interpolation inequalities for maximal functions measuring smoothness},
     journal = {Algebra i analiz},
     pages = {192--229},
     publisher = {mathdoc},
     volume = {24},
     number = {2},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AA_2012_24_2_a6/}
}
TY  - JOUR
AU  - E. E. Lokharu
TI  - Interpolation inequalities for maximal functions measuring smoothness
JO  - Algebra i analiz
PY  - 2012
SP  - 192
EP  - 229
VL  - 24
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AA_2012_24_2_a6/
LA  - ru
ID  - AA_2012_24_2_a6
ER  - 
%0 Journal Article
%A E. E. Lokharu
%T Interpolation inequalities for maximal functions measuring smoothness
%J Algebra i analiz
%D 2012
%P 192-229
%V 24
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AA_2012_24_2_a6/
%G ru
%F AA_2012_24_2_a6
E. E. Lokharu. Interpolation inequalities for maximal functions measuring smoothness. Algebra i analiz, Tome 24 (2012) no. 2, pp. 192-229. http://geodesic.mathdoc.fr/item/AA_2012_24_2_a6/

[1] Bojarski B., Hajlasz P., “Pointwise inequalities for Sobolev functions and some applications”, Studia Math., 106:1 (1993), 77–92 | MR | Zbl

[2] Brezis H., Wainger S., “A note on limiting cases of Sobolev embeddings and convolution inequalities”, Comm. Partial Differential Equations, 5:7 (1980), 773–789 | DOI | MR | Zbl

[3] Calderon A., Scott R., “Sobolev type inequalities for $p>0$”, Studia Math., 62 (1978), 75–92 | MR | Zbl

[4] DeVore R., Sharpley R., Maximal functions measuring smoothness, Mem. Amer. Math. Soc., 47, no. 293, 1984 | MR

[5] Fefferman C., Stein E. M., “$H^p$ spaces of several variables”, Acta Math., 129 (1972), 137–193 | DOI | MR | Zbl

[6] Gagliardo E., “Proprietà di alcune classi di funzioni più variabili”, Ric. Mat., 7 (1958), 102–137 | MR | Zbl

[7] Kalamajska A., Milani A., “Anisotropic Sobolev spaces and parabolic equations”, Ulmer Seminare über Funktionalanalysis und Differentialgleichungen, 2, 1997, 237–273

[8] Kalamajska A., “Pointwise multiplicative inequalities and Nirenberg type estimates in weighted Sobolev spaces”, Studia Math., 108 (1994), 275–290 | MR | Zbl

[9] Kislyakov S., Kruglyak N., Extremal problems in interpolation theory, Whitney–Besicovitch coverings, and singular integrals, Monogr. Mat., Birkhäuser (to appear)

[10] Kozono H., Taniuchi Y., “Limiting case of the Sobolev inequality in BMO, with application to the Euler equations”, Comm. Math. Phys., 214 (2000), 191–200 | DOI | MR | Zbl

[11] Kufner A., Wannebo A., “An interpolation inequality involving Hölder norms”, Georgian Math. J., 2:6 (1995), 603–612 | DOI | MR | Zbl

[12] Lokharu E., “Neravenstvo Galyardo–Nirenberga dlya maksimalnykh funktsii, izmeryayuschikh gladkost”, Zap. nauch. semin. POMI, 389, 2011, 143–161 | MR

[13] Lokharu E., “Maksimalnye funktsii, izmeryayuschie gladkost: kontrprimery”, Zap. nauch. semin. POMI, 397, 2011, 53–72 | MR

[14] Maz'ya V., Shaposhnikova T., “On pointwise interpolation inequalities for derivatives”, Math. Bohem., 124:2–3 (1999), 131–148 | MR

[15] Meyer Y., Rivière T., “A partial regularity result for a class of stationary Yang–Mills fields in high dimension”, Rev. Mat. Iberoamericana, 19:1 (2003), 195–219 | DOI | MR | Zbl

[16] Nirenberg L., “On elliptic partial differential equations”, Ann. Scuola Norm. Sup. Pisa (3), 13 (1959), 115–162 | MR | Zbl

[17] Strzelecki P., “Gagliardo–Nirenberg inequalities with a BMO term”, Bull. London Math. Soc., 38:2 (2006), 294–300 | DOI | MR | Zbl

[18] Triebel H., Theory of function spaces, v. II, Monogr. in Math., 84, Birkhäuser, Basel, 1992 | MR | Zbl