On connection of Kurihara's classification with the theory of elimination of ramification
Algebra i analiz, Tome 24 (2012) no. 2, pp. 130-153.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{AA_2012_24_2_a3,
     author = {O. Yu. Ivanova},
     title = {On connection of {Kurihara's} classification with the theory of elimination of ramification},
     journal = {Algebra i analiz},
     pages = {130--153},
     publisher = {mathdoc},
     volume = {24},
     number = {2},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AA_2012_24_2_a3/}
}
TY  - JOUR
AU  - O. Yu. Ivanova
TI  - On connection of Kurihara's classification with the theory of elimination of ramification
JO  - Algebra i analiz
PY  - 2012
SP  - 130
EP  - 153
VL  - 24
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AA_2012_24_2_a3/
LA  - ru
ID  - AA_2012_24_2_a3
ER  - 
%0 Journal Article
%A O. Yu. Ivanova
%T On connection of Kurihara's classification with the theory of elimination of ramification
%J Algebra i analiz
%D 2012
%P 130-153
%V 24
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AA_2012_24_2_a3/
%G ru
%F AA_2012_24_2_a3
O. Yu. Ivanova. On connection of Kurihara's classification with the theory of elimination of ramification. Algebra i analiz, Tome 24 (2012) no. 2, pp. 130-153. http://geodesic.mathdoc.fr/item/AA_2012_24_2_a3/

[1] Zhukov I. B., Koroteev M. V., “Ustranenie vysshego vetvleniya”, Algebra i analiz, 11:6 (1999), 153–177 | MR | Zbl

[2] Ivanova O. Yu., “Rang topologicheskoi $K$-gruppy kak $\mathbb Z_p$-modulya”, Algebra i analiz, 20:4 (2008), 87–117 | MR

[3] Fesenko I. B., Vostokov S. V., Local fields and their extensions. A constructive approach, Transl. Math. Monogr., 121, Amer. Math. Soc., Providence, RI, 1993 | MR | Zbl

[4] Kurihara M., “On two types of complete discrete valuation fields”, Compositio Math., 63 (1987), 237–257 | MR | Zbl

[5] Serre J.-P., Local fields, Grad. Texts in Math., 67, Springer-Verlag, New York–Berlin, 1979 | MR | Zbl

[6] Zhukov I., “Higher dimensional local fields”, Invitation to Higher Local Fields (Munster, 1999), Geom. Topol. Monogr., 3, Geom. Topol. Publ., Coventry, 2000, 5–18 | DOI | MR | Zbl