On fully nonlinear elliptic and parabolic equations with VMO coefficients in domains
Algebra i analiz, Tome 24 (2012) no. 1, pp. 53-94.

Voir la notice de l'article provenant de la source Math-Net.Ru

The solvability in the Sobolev spaces $W^{1,2}_p$, $p>d+1$, of the terminal-boundary value problem is proved for a class of fully nonlinear parabolic equations, including parabolic Bellman's equations, in bounded cylindrical domains, in the case of VMO “coefficients”. The solvability in $W^2_p$, $p>d$, of the corresponding elliptic boundary-value problem is also obtained.
Keywords: vanishing mean oscillation, fully nonlinear elliptic and parabolic equations, Bellman's equations.
@article{AA_2012_24_1_a2,
     author = {Hongjie Dong and N. V. Krylov and Xu Li},
     title = {On fully nonlinear elliptic and parabolic equations with {VMO} coefficients in domains},
     journal = {Algebra i analiz},
     pages = {53--94},
     publisher = {mathdoc},
     volume = {24},
     number = {1},
     year = {2012},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/AA_2012_24_1_a2/}
}
TY  - JOUR
AU  - Hongjie Dong
AU  - N. V. Krylov
AU  - Xu Li
TI  - On fully nonlinear elliptic and parabolic equations with VMO coefficients in domains
JO  - Algebra i analiz
PY  - 2012
SP  - 53
EP  - 94
VL  - 24
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AA_2012_24_1_a2/
LA  - en
ID  - AA_2012_24_1_a2
ER  - 
%0 Journal Article
%A Hongjie Dong
%A N. V. Krylov
%A Xu Li
%T On fully nonlinear elliptic and parabolic equations with VMO coefficients in domains
%J Algebra i analiz
%D 2012
%P 53-94
%V 24
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AA_2012_24_1_a2/
%G en
%F AA_2012_24_1_a2
Hongjie Dong; N. V. Krylov; Xu Li. On fully nonlinear elliptic and parabolic equations with VMO coefficients in domains. Algebra i analiz, Tome 24 (2012) no. 1, pp. 53-94. http://geodesic.mathdoc.fr/item/AA_2012_24_1_a2/

[1] Bramanti M., Cerutti M., “$W_p^{1,2}$ solvability for the Cauchy–Dirichlet problem for parabolic equations with VMO coefficientse”, Comm. Partial Differential Equations, 18:9–10 (1993), 1735–1763 | DOI | MR | Zbl

[2] Caffarelli L. A., “Interior a priori estimates for solutions of fully nonlinear equations”, Ann. of Math. (2), 130 (1989), 189–213 | DOI | MR | Zbl

[3] Caffarelli L. A., Cabré X., Fully nonlinear elliptic equations, Amer. Math. Soc. Colloq. Publ., 43, Amer. Math. Soc., Providence, RI, 1995 | MR | Zbl

[4] Chiarenza F., Frasca M., Longo P., “Interior $W^{2,p}$ estimates for nondivergence elliptic equations with discontinuous coefficients”, Ricerche Mat., 40:1 (1991), 149–168 | MR | Zbl

[5] Chiarenza F., Frasca M., Longo P., “$W^{2,p}$-solvability of the Dirichlet problem for nondivergence elliptic equations with VMO coefficients”, Trans. Amer. Math. Soc., 336:2 (1993), 841–853 | MR | Zbl

[6] Crandall M. G., Kocan M., Świȩch A., “$L^p$-theory for fully nonlinear uniformly parabolic equations”, Comm. Partial Differential Equations, 25:11–12 (2000), 1997–2053 | DOI | MR | Zbl

[7] Dong Hongjie, Kim Doyoon, “On the $L_p$-solvability of higher order parabolic and elliptic systems with BMO coefficients”, Arch. Rational Mech. Anal., 199:3 (2011), 889–941 | DOI | MR | Zbl

[8] Escauriaza L., “$W^{2,n}$ a priori estimates for solutions to fully non-linear equations”, Indiana Univ. Math. J., 42:2 (1993), 413–423 | DOI | MR | Zbl

[9] Kim Doyoon, Krylov N. V., “Elliptic differential equations with coefficients measurable with respect to one variable and VMO with respect to the others”, SIAM J. Math. Anal., 39:2 (2007), 489–506 | DOI | MR | Zbl

[10] Kim Doyoon, Krylov N. V., “Parabolic equations with measurable coefficients”, Potential Anal., 26:4 (2007), 345–361 | DOI | MR | Zbl

[11] Krylov N. V., Nelineinye ellipticheskie i parabolicheskie uravneniya vtorogo poryadka, Nauka, M., 1985 | MR | Zbl

[12] Krylov N. V., “Parabolic and elliptic equations with VMO coefficients”, Comm. Partial Differential Equations, 32:1–3 (2007), 453–475 | DOI | MR | Zbl

[13] Krylov N. V., “Parabolic equations with VMO coefficients in Sobolev spaces with mixed norms”, J. Funct. Anal., 250:2 (2007), 521–558 | DOI | MR | Zbl

[14] Krylov N. V., Lectures on elliptic and parabolic equations in Sobolev spaces, Grad. Stud. in Math., 96, Amer. Math. Soc., Providence, RI, 2008 | MR | Zbl

[15] Krylov N. V., “On Bellman's equations with VMO coefficients”, Methods Appl. Anal., 17:1 (2010), 105–121 | MR

[16] Krylov N. V., Safonov M. V., “Nekotoroe svoistvo reshenii parabolicheskikh uravnenii s izmerimymi koeffitsientami”, Izv. AN SSSR. Ser. mat., 44:1 (1980), 161–175 | MR | Zbl

[17] Ladyzhenskaya O. A., Uraltseva N. N., Lineinye i kvazilineinye uravneniya ellipticheskogo tipa, Nauka, M., 1964 | MR

[18] Ladyzhenskaya O. A., Solonnikov V. A., Uraltseva N. N., Lineinye i kvazilineinye uravneniya parabolicheskogo tipa, Nauka, M., 1967

[19] “Regularized distance and its applications”, Pacific J. Math., 117:2 (1985), 329–352 | MR | Zbl

[20] Lieberman G. M., Second order parabolic differential equations, World Sci. Publ. Co., Inc., River Edge, NJ, 1996 | MR | Zbl

[21] Lin Fang-Hua, “Second derivative $L^p$-estimates for elliptic equations of nondivergent type”, Proc. Amer. Math. Soc., 96:3 (1986), 447–451 | MR | Zbl

[22] Maugeri A., Palagachev D., Softova L., Elliptic and parabolic equations with discontinuous coefficients, Math. Res., 109, Wiley–VCH, Berlin, 2000 | DOI | MR | Zbl

[23] Safonov M. V., “Neravenstvo Kharnaka dlya ellipticheskikh uravnenii i gelderovost ikh reshenii”, Zap. nauch. semin. LOMI, 96, 1980, 272–287 | MR | Zbl

[24] Safonov M. V., Nonlinear elliptic equations of second order, Lecture Notes, Dip. Mat. Appl. “G. Sansone”, Univ. Degli Studi Firenze, 1991

[25] Safonov M. V., On the boundary value problems for fully nonlinear elliptic equations of second order, Math. Res. Report No. MRR 049-94, Austral. Nat. Univ., Canberra, 1994 http://www.math.umn.edu/~safonov/NOTES/BVP_94/BVP.pdf

[26] Trudinger N. S., “Fully nonlinear, uniformly elliptic equations under natural structure conditions”, Trans. Amer. Math. Soc., 278:2 (1983), 751–769 | DOI | MR | Zbl

[27] Wang L., “On the regularity theory of fully nonlinear parabolic equations”, Bull. Amer. Math. Soc. (N.S.), 22:1 (1990), 107–114 | DOI | MR | Zbl

[28] Wang L., “On the regularity of fully nonlinear parabolic equations. I”, Comm. Pure Appl. Math., 45 (1992), 27–76 | DOI | MR | Zbl

[29] Winter N., “$W^{2,p}$ and $W^{1,p}$-estimates at the boundary for solutions of fully nonlinear, uniformly elliptic equations”, Z. Anal. Anwend., 28:2 (2009), 129–164 | DOI | MR | Zbl