Voir la notice de l'article provenant de la source Math-Net.Ru
@article{AA_2012_24_1_a2, author = {Hongjie Dong and N. V. Krylov and Xu Li}, title = {On fully nonlinear elliptic and parabolic equations with {VMO} coefficients in domains}, journal = {Algebra i analiz}, pages = {53--94}, publisher = {mathdoc}, volume = {24}, number = {1}, year = {2012}, language = {en}, url = {http://geodesic.mathdoc.fr/item/AA_2012_24_1_a2/} }
TY - JOUR AU - Hongjie Dong AU - N. V. Krylov AU - Xu Li TI - On fully nonlinear elliptic and parabolic equations with VMO coefficients in domains JO - Algebra i analiz PY - 2012 SP - 53 EP - 94 VL - 24 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/AA_2012_24_1_a2/ LA - en ID - AA_2012_24_1_a2 ER -
Hongjie Dong; N. V. Krylov; Xu Li. On fully nonlinear elliptic and parabolic equations with VMO coefficients in domains. Algebra i analiz, Tome 24 (2012) no. 1, pp. 53-94. http://geodesic.mathdoc.fr/item/AA_2012_24_1_a2/
[1] Bramanti M., Cerutti M., “$W_p^{1,2}$ solvability for the Cauchy–Dirichlet problem for parabolic equations with VMO coefficientse”, Comm. Partial Differential Equations, 18:9–10 (1993), 1735–1763 | DOI | MR | Zbl
[2] Caffarelli L. A., “Interior a priori estimates for solutions of fully nonlinear equations”, Ann. of Math. (2), 130 (1989), 189–213 | DOI | MR | Zbl
[3] Caffarelli L. A., Cabré X., Fully nonlinear elliptic equations, Amer. Math. Soc. Colloq. Publ., 43, Amer. Math. Soc., Providence, RI, 1995 | MR | Zbl
[4] Chiarenza F., Frasca M., Longo P., “Interior $W^{2,p}$ estimates for nondivergence elliptic equations with discontinuous coefficients”, Ricerche Mat., 40:1 (1991), 149–168 | MR | Zbl
[5] Chiarenza F., Frasca M., Longo P., “$W^{2,p}$-solvability of the Dirichlet problem for nondivergence elliptic equations with VMO coefficients”, Trans. Amer. Math. Soc., 336:2 (1993), 841–853 | MR | Zbl
[6] Crandall M. G., Kocan M., Świȩch A., “$L^p$-theory for fully nonlinear uniformly parabolic equations”, Comm. Partial Differential Equations, 25:11–12 (2000), 1997–2053 | DOI | MR | Zbl
[7] Dong Hongjie, Kim Doyoon, “On the $L_p$-solvability of higher order parabolic and elliptic systems with BMO coefficients”, Arch. Rational Mech. Anal., 199:3 (2011), 889–941 | DOI | MR | Zbl
[8] Escauriaza L., “$W^{2,n}$ a priori estimates for solutions to fully non-linear equations”, Indiana Univ. Math. J., 42:2 (1993), 413–423 | DOI | MR | Zbl
[9] Kim Doyoon, Krylov N. V., “Elliptic differential equations with coefficients measurable with respect to one variable and VMO with respect to the others”, SIAM J. Math. Anal., 39:2 (2007), 489–506 | DOI | MR | Zbl
[10] Kim Doyoon, Krylov N. V., “Parabolic equations with measurable coefficients”, Potential Anal., 26:4 (2007), 345–361 | DOI | MR | Zbl
[11] Krylov N. V., Nelineinye ellipticheskie i parabolicheskie uravneniya vtorogo poryadka, Nauka, M., 1985 | MR | Zbl
[12] Krylov N. V., “Parabolic and elliptic equations with VMO coefficients”, Comm. Partial Differential Equations, 32:1–3 (2007), 453–475 | DOI | MR | Zbl
[13] Krylov N. V., “Parabolic equations with VMO coefficients in Sobolev spaces with mixed norms”, J. Funct. Anal., 250:2 (2007), 521–558 | DOI | MR | Zbl
[14] Krylov N. V., Lectures on elliptic and parabolic equations in Sobolev spaces, Grad. Stud. in Math., 96, Amer. Math. Soc., Providence, RI, 2008 | MR | Zbl
[15] Krylov N. V., “On Bellman's equations with VMO coefficients”, Methods Appl. Anal., 17:1 (2010), 105–121 | MR
[16] Krylov N. V., Safonov M. V., “Nekotoroe svoistvo reshenii parabolicheskikh uravnenii s izmerimymi koeffitsientami”, Izv. AN SSSR. Ser. mat., 44:1 (1980), 161–175 | MR | Zbl
[17] Ladyzhenskaya O. A., Uraltseva N. N., Lineinye i kvazilineinye uravneniya ellipticheskogo tipa, Nauka, M., 1964 | MR
[18] Ladyzhenskaya O. A., Solonnikov V. A., Uraltseva N. N., Lineinye i kvazilineinye uravneniya parabolicheskogo tipa, Nauka, M., 1967
[19] “Regularized distance and its applications”, Pacific J. Math., 117:2 (1985), 329–352 | MR | Zbl
[20] Lieberman G. M., Second order parabolic differential equations, World Sci. Publ. Co., Inc., River Edge, NJ, 1996 | MR | Zbl
[21] Lin Fang-Hua, “Second derivative $L^p$-estimates for elliptic equations of nondivergent type”, Proc. Amer. Math. Soc., 96:3 (1986), 447–451 | MR | Zbl
[22] Maugeri A., Palagachev D., Softova L., Elliptic and parabolic equations with discontinuous coefficients, Math. Res., 109, Wiley–VCH, Berlin, 2000 | DOI | MR | Zbl
[23] Safonov M. V., “Neravenstvo Kharnaka dlya ellipticheskikh uravnenii i gelderovost ikh reshenii”, Zap. nauch. semin. LOMI, 96, 1980, 272–287 | MR | Zbl
[24] Safonov M. V., Nonlinear elliptic equations of second order, Lecture Notes, Dip. Mat. Appl. “G. Sansone”, Univ. Degli Studi Firenze, 1991
[25] Safonov M. V., On the boundary value problems for fully nonlinear elliptic equations of second order, Math. Res. Report No. MRR 049-94, Austral. Nat. Univ., Canberra, 1994 http://www.math.umn.edu/~safonov/NOTES/BVP_94/BVP.pdf
[26] Trudinger N. S., “Fully nonlinear, uniformly elliptic equations under natural structure conditions”, Trans. Amer. Math. Soc., 278:2 (1983), 751–769 | DOI | MR | Zbl
[27] Wang L., “On the regularity theory of fully nonlinear parabolic equations”, Bull. Amer. Math. Soc. (N.S.), 22:1 (1990), 107–114 | DOI | MR | Zbl
[28] Wang L., “On the regularity of fully nonlinear parabolic equations. I”, Comm. Pure Appl. Math., 45 (1992), 27–76 | DOI | MR | Zbl
[29] Winter N., “$W^{2,p}$ and $W^{1,p}$-estimates at the boundary for solutions of fully nonlinear, uniformly elliptic equations”, Z. Anal. Anwend., 28:2 (2009), 129–164 | DOI | MR | Zbl