Voir la notice de l'article provenant de la source Math-Net.Ru
@article{AA_2012_24_1_a0, author = {A. A. Vasilyeva}, title = {Kolmogorov widths and approximation numbers of {Sobolev} classes with singular weights}, journal = {Algebra i analiz}, pages = {3--39}, publisher = {mathdoc}, volume = {24}, number = {1}, year = {2012}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/AA_2012_24_1_a0/} }
A. A. Vasilyeva. Kolmogorov widths and approximation numbers of Sobolev classes with singular weights. Algebra i analiz, Tome 24 (2012) no. 1, pp. 3-39. http://geodesic.mathdoc.fr/item/AA_2012_24_1_a0/
[1] Heinrich S., “On the relation between linear $n$-widths and approximation numbers”, J. Approx. Theory, 58:3 (1989), 315–333 | DOI | MR | Zbl
[2] Tikhomirov V. M., “Poperechniki mnozhestv v funktsionalnykh prostranstvakh i teoriya nailuchshikh priblizhenii”, Uspekhi mat. nauk, 15:3 (1960), 81–120 | MR | Zbl
[3] Babadzhanov S. B., Tikhomirov V. M., “O poperechnikakh odnogo funktsionalnogo klassa v prostranstve $L^p$, $(p>1)$”, Izv. AN UzSSR. Ser. fiz.-mat. nauk, 1967, no. 2, 24–30 | Zbl
[4] Buslaev A. P., Tikhomirov V. M., “Spektry nelineinykh differentsialnykh uravnenii i poperechniki sobolevskikh klassov”, Mat. sb., 181:12 (1990), 1587–1606 | MR | Zbl
[5] Ismagilov R. S., “Poperechniki mnozhestv v lineinykh normirovannykh prostranstvakh i priblizhenie funktsii trigonometricheskimi mnogochlenami”, Uspekhi mat. nauk, 29:3 (1974), 161–178 | MR | Zbl
[6] Kashin B. S., “Poperechniki nekotorykh konechnomernykh mnozhestv i klassov gladkikh funktsii”, Izv. AN SSSR. Ser. mat., 41:2 (1977), 334–351 | MR | Zbl
[7] Pietsch A., “$s$-numbers of operators in Banach spaces”, Studia Math., 51 (1974), 201–223 | MR | Zbl
[8] Stesin M. I., “Aleksandrovskie poperechniki konechnomernykh mnozhestv i klassov gladkikh funktsii”, Dokl. AN SSSR, 220:6 (1975), 1278–1281 | MR | Zbl
[9] Maiorov V. E., “Diskretizatsiya zadachi o poperechnikakh”, Uspekhi mat. nauk, 30:6 (1975), 179–180 | MR | Zbl
[10] Makovoz Yu. I., “Ob odnom prieme otsenki snizu poperechnikov mnozhestv v banakhovykh prostranstvakh”, Mat. sb., 87(129):1 (1972), 136–142 | MR | Zbl
[11] Gluskin E. D., “Normy sluchainykh matrits i poperechniki konechnomernykh mnozhestv”, Mat. sb., 120(162):2 (1983), 180–189 | MR | Zbl
[12] Tikhomirov V. M., Nekotorye voprosy teorii priblizhenii, MGU, M., 1976 | MR
[13] Tikhomirov V. M., “Teoriya priblizhenii”, Itogi nauki i tekhn. Sovrem. probl. mat. Fundam. napravleniya, 14, VINITI, M., 1987, 103–260 | MR | Zbl
[14] Pinkus A., $n$-widths in approximation theory, Ergeb. Math. Grenzgeb. (3), 7, Springer, Berlin, 1985 | MR | Zbl
[15] Lifshits M. A., Linde W., Approximation and entropy numbers of Volterra operators with application to Brownian motion, Mem. Amer. Math. Soc., 157, no. 745, 2002 | MR
[16] Edmunds D. E., Lang J., “Approximation numbers and Kolmogorov widths of Hardy-type operators in a non-homogeneous case”, Math. Nachr., 279:7 (2006), 727–742 | DOI | MR | Zbl
[17] Lang J., “Improved estimates for the approximation numbers of Hardy-type operators”, J. Approx. Theory, 121:1 (2003), 61–70 | DOI | MR | Zbl
[18] Lomakina E. N., Stepanov V. D., “On asymptotic behaviour of the approximation numbers and estimates of Schatten–von Neumann norms of the Hardy-type integral operators”, Function Spaces and Applications (Delhi, 1997), Narosa, New Delhi, 2000, 153–187 | MR
[19] Lomakina E. N., Stepanov V. D., “Asimptoticheskie otsenki approksimativnykh i entropiinykh chisel odnovesovogo operatora Rimana–Liuvillya”, Mat. trudy (In-t mat. im. S. L. Soboleva), 9:1 (2006), 52–100 | MR | Zbl
[20] Vasileva A. A., “Otsenki poperechnikov vesovykh sobolevskikh klassov”, Mat. sb., 201:7 (2010), 15–52 | MR | Zbl
[21] Vasil'eva A. A., “Criterion for the existence of a continuous embedding of a weighted Sobolev class on a closed interval and on a semiaxis”, Russ. J. Math. Phys., 16:4 (2009), 543–562 | DOI | MR
[22] Batuev E. N., Stepanov V. D., “O vesovykh neravenstvakh tipa Khardi”, Sib. mat. zh., 30:1 (1989), 13–22 | MR | Zbl
[23] Stepanov V. D., “Dvukhvesovye otsenki integralov Rimana–Liuvillya”, Izv. AN SSSR. Ser. mat., 54:3 (1990), 645–656 | MR | Zbl
[24] Stepanov V. D., Two-weighted estimates for Riemann–Liouville integrals, Rep. no. 39, Ceskoslov. Akad. Věd. Mat. Ústav., Prague, 1988, 28 pp.
[25] Stepanov V. D., “Weighted norm inequalities for integral operators and related topics”, Nonlinear Analysis, Function Spaces and Applications (Prague, 1994), v. 5, Prometheus, Prague, 1994, 139–175 | MR | Zbl
[26] Stepanov V. D., “Weighted norm inequalities of Hardy type for a class of integral operators”, J. London Math. Soc. (2), 50:1 (1994), 105–120 | DOI | MR | Zbl
[27] Kufner A., Kheinig G. P., “Neravenstvo Khardi dlya proizvodnykh vysshikh poryadkov”, Tr. Mat. in-ta AN SSSR, 192, 1990, 105–113 | MR | Zbl
[28] Haroske D. D., Skrzypczak L., “Entropy and approximation numbers of embeddings of function spaces with Muckenhoupt weights. I”, Rev. Mat. Complut., 21:1 (2008), 135–177 | MR | Zbl
[29] Haroske D. D., Skrzypczak L., “Entropy numbers of embeddings of function spaces with Muckenhoupt weights. III. Some limiting cases”, J. Funct. Spaces Appl., 9:2 (2011), 129–178 | DOI | MR | Zbl
[30] Pisier G., The volume of convex bodies and Banach space geometry, Cambridge Tracts in Math., 94, Cambridge Univ. Press, Cambridge, 1989 | MR | Zbl