Voir la notice de l'article provenant de la source Math-Net.Ru
@article{AA_2011_23_6_a5, author = {S. A. Nazarov}, title = {On the spectrum of the {Laplace} operator on the infinite {Dirichlet} ladder}, journal = {Algebra i analiz}, pages = {144--177}, publisher = {mathdoc}, volume = {23}, number = {6}, year = {2011}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/AA_2011_23_6_a5/} }
S. A. Nazarov. On the spectrum of the Laplace operator on the infinite Dirichlet ladder. Algebra i analiz, Tome 23 (2011) no. 6, pp. 144-177. http://geodesic.mathdoc.fr/item/AA_2011_23_6_a5/
[1] Ladyzhenskaya O. A., Kraevye zadachi matematicheskoi fiziki, Nauka, M., 1973 | MR
[2] Birman M. Sh., Solomyak M. Z., Spektralnaya teoriya samosopryazhennykh operatorov v gilbertovom prostranstve, LGU, L., 1980 | MR
[3] Gelfand I. M., “Razlozhenie po sobstvennym funktsiyam uravneniya s periodicheskimi koeffitsientami”, Dokl. AN SSSR, 73:6 (1950), 1117–1120 | MR
[4] Kuchment P. A., “Teoriya Floke dlya differentsialnykh uravnenii v chastnykh proizvodnykh”, Uspekhi mat. nauk, 37:4 (1982), 3–52 | MR | Zbl
[5] Nazarov S. A., “Properties of spectra of boundary value problems in cylindrical and quasicylindrical domain”, Sobolev Spaces in Mathematics, v. II, Int. Math. Ser. (N.Y.), 9, ed. V. Maz'ya, Springer, New York, 2009, 261–309 | DOI | MR | Zbl
[6] Nazarov S. A., Plamenevskii B. A., Ellipticheskie zadachi v oblastyakh s kusochno gladkoi granitsei, Nauka, M., 1991
[7] Kuchment P., Floquet theory for partial differential equations, Oper. Theory Adv. Appl., 60, Birkhäuser, Basel, 1993 | MR | Zbl
[8] Kato T., Teoriya vozmuschenii lineinykh operatorov, Mir, M., 1972 | MR | Zbl
[9] Nazarov S. A., “Ellipticheskie kraevye zadachi s periodicheskimi koeffitsientami v tsilindre”, Izv. AN SSSR. Ser. mat., 45:1 (1981), 101–112 | MR | Zbl
[10] Avishai Y., Bessis D., Giraud B. G., Mantica G., “Quantum bound states in open geometries”, Phys. Rev. B, 44:15 (1991), 8028–8034 | DOI
[11] Duclos P., Exner P., “Curvature-induced bound states in quantum waveguides in two and three dimensions”, Rev. Math. Phys., 7:1 (1995), 73–102 | DOI | MR | Zbl
[12] Exner P., Šeba P., Tater M., Vaněk D., “Bound states and scattering in quantum waveguides coupled laterally through a boundary window”, J. Math. Phys., 37:10 (1996), 4867–4887 | DOI | MR | Zbl
[13] Borisov D., Exner P., Gagyl'shin R., Krejčiřik D., “Bound states in weakly deformed strips and layers”, Ann. Henri Poincaré, 2 (2001), 553–572 | DOI | MR | Zbl
[14] Nazarov S. A., “Diskretnyi spektr kolenchatykh, razvetvlyayuschikhsya i periodicheskikh volnovodov”, Algebra i analiz, 23:2 (2011), 206–247 | MR
[15] Nazarov S. A., “Lokalizovannye volny v $T$-obraznom volnovode”, Akust. zh., 57:6 (2010), 747–758
[16] Joshitomi K., “Band gap in the spectrum of periodically curved quantum waveguides”, J. Differential Equations, 142:1 (1998), 123–166 | DOI | MR
[17] Friedlander L., Solomyak M., “On the spectrum of narrow periodic waveguides”, Russ. J. Math. Phys., 15:2 (2008), 238–242 | DOI | MR | Zbl
[18] Nazarov S. A., “Lakuna v suschestvennom spektre zadachi Neimana dlya ellipticheskoi sistemy na periodicheskoi oblasti”, Funkts. anal. i ego pril., 43:3 (2009), 92–95 | MR
[19] Nazarov S. A., “Primer mnozhestvennosti lakun v spektre periodicheskogo volnovoda”, Mat. sb., 201:4 (2010), 99–124 | MR | Zbl
[20] Smirnov V. I., Kurs vysshei matematiki, v. 2, Nauka, M., 1967
[21] Kondratev V. A., “Kraevye zadachi dlya ellipticheskikh uravnenii v oblastyakh s konicheskimi ili uglovymi tochkami”, Tr. Mosk. mat. o-va, 16, 1967, 209–292
[22] Mazya V. G., Plamenevskii B. A., “O koeffitsientakh v asimptotike reshenii ellipticheskikh kraevykh zadach v oblastyakh s konicheskimi tochkami”, Math. Nachr., 76 (1977), 29–60 | DOI
[23] Mazya V. G., Plamenevskii B. A., “Otsenki v $L_p$ i v klassakh Geldera i printsip maksimuma Miranda–Agmona dlya reshenii ellipticheskikh kraevykh zadach v oblastyakh s osobymi tochkami na granitse”, Math. Nachr., 81 (1978), 25–82 | DOI
[24] Nazarov S A., “Polinomialnoe svoistvo samosopryazhennykh ellipticheskikh kraevykh zadach i algebraicheskoe opisanie ikh atributov”, Uspekhi mat. nauk, 54:5 (1999), 77–142 | MR | Zbl
[25] Nazarov S. A., “Ob asimptotike po parametru resheniya kraevoi zadachi s periodicheskimi koeffitsientami v tsilindre”, Differentsialnye uravneniya i ikh primeneniya, 30, AN LitSSR, Vilnyus, 1981, 27–45
[26] Mazja W. G., Nasarow S. A., Plamenewski B. A., Asymptotische Theorie elliptischer Randwertaufgaben in singulär gestörten Gebieten, v. 1, Akademie-Verlag, Berlin, 1991; Maz'ya V., Nazarov S., Plamenevskij B., Asymptotic theory of elliptic boundary value problems in singularly perturbed domains, v. 1, Birkhäuser, Basel, 2000
[27] Vishik M. I., Lyusternik L. A., “Regulyarnoe vyrozhdenie i pogranichnyi sloi dlya lineinykh differentsialnykh uravnenii s malym parametrom”, Uspekhi mat. nauk, 12:5 (1957), 3–122 | MR | Zbl