Width of groups of type $\mathrm E_6$ with respect to root elements.~I
Algebra i analiz, Tome 23 (2011) no. 5, pp. 155-198.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{AA_2011_23_5_a4,
     author = {I. M. Pevzner},
     title = {Width of groups of type $\mathrm E_6$ with respect to root {elements.~I}},
     journal = {Algebra i analiz},
     pages = {155--198},
     publisher = {mathdoc},
     volume = {23},
     number = {5},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AA_2011_23_5_a4/}
}
TY  - JOUR
AU  - I. M. Pevzner
TI  - Width of groups of type $\mathrm E_6$ with respect to root elements.~I
JO  - Algebra i analiz
PY  - 2011
SP  - 155
EP  - 198
VL  - 23
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AA_2011_23_5_a4/
LA  - ru
ID  - AA_2011_23_5_a4
ER  - 
%0 Journal Article
%A I. M. Pevzner
%T Width of groups of type $\mathrm E_6$ with respect to root elements.~I
%J Algebra i analiz
%D 2011
%P 155-198
%V 23
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AA_2011_23_5_a4/
%G ru
%F AA_2011_23_5_a4
I. M. Pevzner. Width of groups of type $\mathrm E_6$ with respect to root elements.~I. Algebra i analiz, Tome 23 (2011) no. 5, pp. 155-198. http://geodesic.mathdoc.fr/item/AA_2011_23_5_a4/

[1] Borel A., “Svoistva i lineinye predstavleniya grupp Shevalle”, Seminar po algebraicheskim gruppam, Mir, M., 1973, 9–59 | MR

[2] Burbaki N., Gruppy i algebry Li, Gl. IV–VI, Mir, M., 1972 | MR | Zbl

[3] Burbaki N., Gruppy i algebry Li, Gl. VII–VIII, Mir, M., 1978 | MR

[4] Vavilov N. A., “Kak uvidet znaki strukturnykh konstant?”, Algebra i analiz, 19:4 (2007), 34–68 | MR

[5] Vavilov N. A., Gavrilovich M. R., “$\mathrm A_2$-dokazatelstvo strukturnykh teorem dlya grupp Shevalle tipov $\mathrm E_6$ i $\mathrm E_7$”, Algebra i analiz, 16:4 (2004), 54–87 | MR | Zbl

[6] Vavilov N. A., Gavrilovich M. R., Nikolenko S. I., “Stroenie grupp Shevalle: dokazatelstvo iz Knigi”, Zap. nauch. semin. POMI, 330, 2006, 36–76 | MR | Zbl

[7] Vavilov N. A., Luzgarev A. Yu., “Normalizator gruppy Shevalle tipa $\mathrm E_6$”, Algebra i analiz, 19:5 (2007), 37–64 | MR

[8] Vavilov N. A., Luzgarev A. Yu., Pevzner I. M., “Gruppa Shevalle tipa $\mathrm E_6$ v 27-mernom predstavlenii”, Zap. nauch. semin. POMI, 338, 2006, 5–68 | MR | Zbl

[9] Vavilov N. A., Pevzner I. M., “Troiki dlinnykh kornevykh podgrupp”, Zap. nauch. semin. POMI, 343, 2007, 54–83 | MR

[10] Vinberg E. B., Onischik A. L., Seminar po gruppam Li i algebraicheskim gruppam, Nauka, M., 1988 | MR

[11] Kondratev A. S., “Podgruppy konechnykh grupp Shevalle”, Uspekhi mat. nauk, 41:1 (1986), 57–96 | MR | Zbl

[12] Kourovskaya tetrad: Nereshennye problemy teorii grupp, 16 izd., In-t mat. SO RAN, Novosibirsk, 2006

[13] Luzgarev A. Yu., “O nadgruppakh $\mathrm E(\mathrm E_6,R)$ i $\mathrm E(\mathrm E_7,R)$ v minimalnykh predstavleniyakh”, Zap. nauch. semin. POMI, 319, 2004, 216–243 | MR | Zbl

[14] Luzgarev A. Yu., “Opisanie nadgrupp $\mathrm F_4$ v $\mathrm E_6$ nad kommutativnym koltsom”, Algebra i analiz, 20:6 (2008), 148–185 | MR

[15] Mazurov V. D., “O porozhdenii sporadicheskikh prostykh grupp tremya involyutsiyami, dve iz kotorykh perestanovochny”, Sib. mat. zh., 44:1 (2003), 193–198 | MR | Zbl

[16] Nuzhin Ya. N., “Porozhdayuschie troiki involyutsii grupp Shevalle nad konechnym polem kharakteristiki 2”, Algebra i logika, 29:2 (1990), 192–206 | MR | Zbl

[17] Nuzhin Ya. N., “Porozhdayuschie troiki involyutsii znakoperemennykh grupp”, Mat. zametki, 51:4 (1992), 91–95 | MR | Zbl

[18] Nuzhin Ya. N., “Porozhdayuschie troiki involyutsii grupp lieva tipa nad konechnym polem nechetnoi kharakteristiki, I”, Algebra i logika, 36:1 (1997), 77–96 | MR | Zbl

[19] Nuzhin Ya. N., “Porozhdayuschie troiki involyutsii grupp lieva tipa nad konechnym polem nechetnoi kharakteristiki, II”, Algebra i logika, 36:4 (1997), 422–440 | MR | Zbl

[20] O'Mira O., “Lektsii o lineinykh gruppakh”, Avtomorfizmy klassicheskikh grupp, Mir, M., 1976, 57–167 | MR

[21] O'Mira O., Lektsii o simplekticheskikh gruppakh, Mir, M., 1979

[22] Pevzner I. M., “Geometriya kornevykh elementov v gruppakh tipa $\mathrm E_6$”, Algebra i analiz, 23:3 (2011), 261–309

[23] Springer T. A., “Lineinye algebraicheskie gruppy”, Algebraicheskaya geometriya – 4, Itogi nauki i tekhn. Ser. Sovrem. probl. mat. Fundam. napravleniya, 55, VINITI, M., 1989, 5–136 | MR | Zbl

[24] Steinberg R., Lektsii o gruppakh Shevalle, Mir, M., 1975 | MR | Zbl

[25] Khamfri Dzh., Lineinye algebraicheskie gruppy, Nauka, M., 1980 | MR

[26] Khamfri Dzh., Vvedenie v teoriyu algebr Li i ikh predstavlenii, MTsNMO, M., 2003

[27] Aschbacher M., “The 27-dimensional module for $\mathrm E_6$, I”, Invent. Math., 89:1 (1987), 159–195 | DOI | MR | Zbl

[28] Aschbacher M., “The 27-dimensional module for $\mathrm E_6$, II”, J. London Math. Soc. (2), 37 (1988), 275–293 | DOI | MR | Zbl

[29] Aschbacher M., “The 27-dimensional module for $\mathrm E_6$, III”, Trans. Amer. Math. Soc., 321 (1990), 45–84 | DOI | MR | Zbl

[30] Aschbacher M., “The 27-dimensional module for $\mathrm E_6$, IV”, J. Algebra, 131 (1990), 23–39 | DOI | MR | Zbl

[31] Aschbacher M., “Some multilinear forms with large isometry groups”, Geom. Dedicata, 25:1–3 (1988), 417–465 | MR

[32] Aschbacher M., “The geometry of trilinear forms”, Finite Geometries, Buildings and Related Topics (Pingree Park, CO, 1988), Oxford Univ. Press, Oxford, 1990, 75–84 | MR

[33] Aschbacher M., Seitz G. M., “Involutions in Chevalley groups over fields of even order”, Nagoya Math. J., 63 (1976), 1–91 | MR | Zbl

[34] Austin P., “Products of involutions in the groups of Lie type $\mathrm F_4(K)$”, Comm. Algebra, 27:2 (1999), 557–575 | DOI | MR | Zbl

[35] Ballantine C. S., “Products of involutory matrices, I”, Linear and Multilinear Algebra, 5:1 (1977–1978), 53–62 | DOI | MR | Zbl

[36] Brown A., Pearcy C., “Multiplicative commutators of operators”, Canad. J. Math., 18 (1966), 737–749 | DOI | MR | Zbl

[37] Carter R. W., Simple groups of Lie type, Wiley, London, 1989 | MR | Zbl

[38] Chevalley C., Schafer R. D., “The exceptional simple Lie algebras $\mathrm F_4$ and $\mathrm E_6$”, Proc. Nat. Acad. Sci. USA, 36 (1950), 137–141 | DOI | MR | Zbl

[39] Cohen A. M., Cushman R. H., “Gröbner bases and standard monomial theory”, Computational Algebraic Geometry (Nice, 1992), Progr. Math., 109, Birkhäuser Boston, Boston, MA, 1993, 41–60 | MR | Zbl

[40] Cohen A. M., Liebeck M. W., Saxl J., Seitz G. M., “The local maximal subgroups of exceptional groups of Lie type, finite and algebraic”, Proc. London Math. Soc. (3), 64:1 (1992), 21–48 | DOI | MR

[41] Dalla Volta F., “Gruppi sporadici generati da tre involuzioni”, Istit. Lombardo Accad. Sci. Lett. Rend. A, 119 (1985), 65–87 (1987) | MR

[42] Dalla Volta F., Generazione mediante tre involuzioni di gruppi ortogonali di indice di Witt minimale in caratteristica 2, Dip. Matematica, Politecnio di Milano, 1990

[43] Dalla Volta F., “Gruppi ortogonali di indice di Witt minimale generati da tre involuzioni”, Geom. Dedicata, 41:2 (1992), 135–143 | MR | Zbl

[44] Dalla Volta F., Tamburini M. C., “Generazione di $\mathrm{PSp}(4,q)$ mediante tre involuzioni”, Boll. Un. Mat. Ital. A (7), 3:3 (1989), 285–289 | MR | Zbl

[45] Dalla Volta F., Tamburini M. C., “Generation of some orthogonal groups by a set of three involutions”, Arch. Math. (Basel), 56:5 (1991), 424–432 | MR | Zbl

[46] Dennis R. K., Vaserstein L. N., “On a question of M. Newman on the number of commutators”, J. Algebra, 118:1 (1988), 150–161 | DOI | MR | Zbl

[47] Dennis R. K., Vaserstein L. N., “Commutators in linear groups”, $\mathrm K$-Theory, 2:6 (1989), 761–767 | MR | Zbl

[48] Deriziotis D. I., Fakiolas A. P., “The maximal tori in the finite Chevalley groups of type $\mathrm E_6$, $\mathrm E_7$ and $\mathrm E_8$”, Comm. Algebra, 19:3 (1991), 889–903 | DOI | MR

[49] Dieudonné J., “Sur les générateurs des groupes classiques”, Summa Brasil. Math., 3 (1955), 149–179 | MR

[50] Djoković D. Ž., Malzan J. G., “Products of reflections in the general linear group over a division ring”, Linear Algebra Appl., 28 (1979), 53–62 | DOI | MR | Zbl

[51] Djoković D. Ž., Malzan J. G., Products of reflections in $\mathrm U(p,q)$, Mem. Amer. Math. Soc., 37, no. 259, 1982 | MR

[52] Dye R. H., “Scherk's theorem on orthogonalities revisited”, Geom. Dedicata, 20:3 (1986), 349–356 | DOI | MR

[53] Ellers E. W., “Decomposition of orthogonal, symplectic, and unitary isometries into simple isometries”, Abh. Math. Sem. Univ. Hamburg, 46 (1977), 97–127 | DOI | MR | Zbl

[54] Ellers E. W., “Products of involutions in simple Chevalley groups”, J. Geom., 69:1–2 (2000), 68–72 | DOI | MR | Zbl

[55] Ellers E. W., Frank R., “Products of quasireflections and transvections over local rings”, J. Geom., 31:1–2 (1988), 69–78 | DOI | MR | Zbl

[56] Ellers E. W., Ishibashi H., “Factorization of transformations over a local ring”, Linear Algebra Appl., 85 (1987), 17–27 | DOI | MR | Zbl

[57] Ellers E. W., Lausch H., “Length theorems for the general linear group of a module over a local ring”, J. Austral. Math. Soc. Ser. A, 46:1 (1989), 122–131 | DOI | MR | Zbl

[58] Ellers E. W., Lausch H., “Generators for classical groups of modules over local rings”, J. Geom., 39:1–2 (1990), 60–79 | DOI | MR | Zbl

[59] Epstein D. B. A., “Commutators of $C^\infty$-diffeomorphisms”, Appendix to “A curious remark concerning the geometric transfer map” by John N. Mather, Comment. Math. Helv., 59:1 (1984), 111–122 | DOI | MR | Zbl

[60] Gilkey P., Seitz G. M., “Some representations of exceptional Lie algebras”, Geom. Dedicata, 25:1–3 (1988), 407–416 | MR | Zbl

[61] Gillio B. M., Tamburini M. C., “Alcuni classi di gruppi generati da tre involuzioni”, Istit. Lombardo Accad. Sci. Lett. Rend. Ser. A, 116 (1982), 191–209 | MR | Zbl

[62] Goldstein R. Z., Turner E. C., “A note on commutators and squares in free products”, Combinatorial Methods in Topology and Algebraic Geometry (Rochester, N.Y., 1982), Contemp. Math., 44, Amer. Math. Soc., Providence, RI, 1985, 69–72 | MR

[63] Gordon B., Guralnick R. M., Miller M. D., “On cyclic commutator subgroups”, Aequationes Math., 17:2–3 (1978), 241–248 | DOI | MR | Zbl

[64] Götzky M., “Unverkürzbare Produkte und Relationen in unitären Gruppen”, Math. Z., 104 (1968), 1–15 | DOI | MR

[65] Götzky M., “Über die Erzeugenden der engeren unitären Gruppen”, Arch. Math. (Basel), 19 (1968), 383–389 | MR

[66] Guralnick R. M., “On groups with decomposable commutator subgroups”, Glasgow Math. J., 19:2 (1978), 159–162 | DOI | MR | Zbl

[67] Guralnick R. M., “On cyclic commutator subgroups”, Aequationes Math., 21:1 (1980), 33–38 | DOI | MR

[68] Guralnick R. M., “Commutators and commutator subgroups”, Adv. in Math., 45:3 (1982), 319–330 | DOI | MR | Zbl

[69] Gustafson W. H., Halmos P. R., Radjavi H., “Products of involutions”, Linear Algebra and Appl., 13:1–2 (1976), 157–162 | DOI | MR | Zbl

[70] de la Harpe P., Skandalis G., “Déterminant associé à une trace sur une algébre de Banach”, Ann. Inst. Fourier (Grenoble), 34:1 (1984), 241–260 | DOI | MR | Zbl

[71] de la Harpe P., Skandalis G., “Produits finis de commutateurs dans les $C^*$-algèbres”, Ann. Inst. Fourier (Grenoble), 34:4 (1984), 169–202 | DOI | MR | Zbl

[72] de la Harpe P., Skandalis G., “Sur la simplicité essentiele du groupe des inversibles et du groupe unitaire dans une $C^*$-algèbre simple”, J. Funct. Anal., 62:3 (1985), 354–378 | DOI | MR | Zbl

[73] Isaacs I. M., “Commutators and the commutator subgroup”, Amer. Math. Monthly, 84:9 (1977), 720–722 | DOI | MR | Zbl

[74] Ishibashi H., “Generators of an orthogonal group over a local valuation domain”, J. Algebra, 55:2 (1978), 302–307 | DOI | MR | Zbl

[75] Ishibashi H., “Generators of $\mathrm{Sp}_n(V)$ over a quasisemilocal semihereditary ring”, J. Pure Appl. Algebra, 22:2 (1981), 121–129 | DOI | MR | Zbl

[76] Ishibashi H., “Generators of orthogonal groups over valuation rings”, Canad. J. Math., 33:1 (1981), 116–128 | DOI | MR | Zbl

[77] van der Kallen W., “$\mathrm{SL}_3(\mathbb C[x])$ does not have bounded word length”, Algebraic K-Theory, Part I (Oberwolfach, 1980), Lecture Notes in Math., 966, Springer, Berlin–New York, 1982, 357–361 | MR

[78] Knüppel F., Nielsen K., “$\mathrm{SL}(V)$ is 4-reflectional”, Geom. Dedicata, 38:3 (1991), 301–308 | DOI | MR

[79] Liebeck H., “A test for commutators”, Glasgow Math. J., 17:1 (1976), 31–36 | DOI | MR | Zbl

[80] Macdonald I. D., “On cyclic commutator subgroups”, J. London Math. Soc., 38 (1963), 419–422 | DOI | MR | Zbl

[81] Malle G., Saxl J., Weigel T. S., “Generation of classical groups”, Geom. Dedicata, 49:1 (1994), 85–116 | DOI | MR | Zbl

[82] Mather J. N., “Commutators of diffeomorphisms”, Comment. Math. Helv., 49 (1974), 512–528 | DOI | MR | Zbl

[83] Mather J. N., “Commutators of diffeomorphisms, II”, Comment. Math. Helv., 50 (1975), 33–40 | DOI | MR | Zbl

[84] Mather J. N., “A curious remark concerning the geometric transfer map”, Comment. Math. Helv., 59:1 (1984), 86–110 | DOI | MR | Zbl

[85] Mather J. N., “Commutators of diffeomorphisms. III: A group which is not perfect”, Comment. Math. Helv., 60:1 (1985), 122–124 | DOI | MR | Zbl

[86] Matsumoto H., “Sur les sous-groupes arithmétiques des groupes semi-simples déployés”, Ann. Sci. École Norm. Sup. (4), 2:1 (1969), 1–62 | MR | Zbl

[87] McDuff D., “On the group of volume-preserving diffeomorphisms of $R^n$”, Trans. Amer. Math. Soc., 261:1 (1980), 103–113 | MR | Zbl

[88] Newman M., “Unimodular commutators”, Proc. Amer. Math. Soc., 101:4 (1987), 605–609 | DOI | MR | Zbl

[89] Ore O., “Some remarks on commutators”, Proc. Amer. Math. Soc., 2 (1951), 307–314 | DOI | MR | Zbl

[90] Parker Ch., Röhrle G. E., Miniscule representations, Preprint No 72, Univ. Bielefeld, 1993, 12 pp.

[91] Plotkin E. B., Semenov A. A., Vavilov N. A., “Visual basic representations: an atlas”, Internat. J. Algebra Comput., 8:1 (1998), 61–95 | DOI | MR | Zbl

[92] Rodney D. M., “On cyclic derived subgroups”, J. London Math. Soc. (2), 8:4 (1974), 642–646 | DOI | MR | Zbl

[93] Röpcke H., “The orthogonal group over a local ring is 4-reflectional”, Geom. Dedicata, 49:3 (1994), 369–373 | DOI | MR

[94] Sivatski A. S., Stepanov A. V., “On the word length of commutators in $\mathrm{GL}_n(R)$”, $\mathrm K$-Theory, 17:4 (1999), 295–302 | MR | Zbl

[95] Spengler U., Wolff H., “Die Länge einer symplektischen Abbildung”, J. Reine Angew. Math., 274–275 (1975), 150–157 | MR | Zbl

[96] Springer T. A., Linear algebraic groups, Progr. Math., 9, Birkhäuser Boston, Inc., Boston, MA,, 1998 | MR | Zbl

[97] Stanley-Albarda C., “A comparison of length definitions for maps of modules over local rings”, J. Geom., 53:1–2 (1995), 191–200 | DOI | MR | Zbl

[98] Tamburini M. C., Zucca P., “Generation of certain matrix groups by three involutions, two of which commute”, J. Algebra, 195:2 (1997), 650–661 | DOI | MR | Zbl

[99] Thurston W., Vaserstein L. N., “On $K_1$-theory of the Euclidean space”, Topology Appl., 23:2 (1986), 145–148 | DOI | MR | Zbl

[100] Tits J., “Sur les constantes de structure et le théorème d'existence des algèbres de Lie semi-simples”, Inst. Hautes Études Sci. Publ. Math., 31 (1966), 21–58 | DOI | MR

[101] Vaserstein L. N., “On $K_1$-theory of topological spaces”, Applications of Algebraic K-Theory to Algebraic Geometry and Number Theory, Part I, II (Boulder, Colo., 1983), Contemp. Math., 55, Amer. Math. Soc., Providence, RI, 1986, 729–740 | MR

[102] Vaserstein L. N., “Reduction of a matrix depending on parameters to a diagonal form by addition operations”, Proc. Amer. Math. Soc., 103:3 (1988), 741–746 | DOI | MR | Zbl

[103] Vaserstein L. N., Wheland E., “Factorization of invertible matrices over rings of stable rank one”, J. Austral. Math. Soc. Ser. A, 48:3 (1990), 455–460 | DOI | MR | Zbl

[104] Vavilov N. A., “Structure of Chevalley groups over commutative rings”, Nonassociative Algebras and Related Topics (Hiroshima, 1990), World Sci. Publ., London etc., 1991, 219–335 | MR | Zbl

[105] Vavilov N. A., “A third look at weight diagrams”, Rend. Sem. Mat. Univ. Padova, 104 (2000), 201–250 | MR | Zbl

[106] Vavilov N. A., “Do it yourself structure constants for Lie algebras of type $E_l$”, Zap. nauch. semin. POMI, 281, 2001, 60–104 | MR | Zbl

[107] Vavilov N. A., “An $\mathrm A_3$-proof of structure theorems for Chevalley groups of types $\mathrm E_6$ and $\mathrm E_7$”, Internat. J. Algebra Comput., 17:5–6 (2007), 1283–1298 | DOI | MR | Zbl

[108] Vavilov N. A., Plotkin E. B., “Chevalley groups over commutative rings. I: Elementary calculations”, Acta Appl. Math., 45 (1996), 73–115 | DOI | MR

[109] Wagner A., “The minimal number of involutions generating some finite three-dimensional groups”, Boll. Un. Mat. Ital. A (5), 15:2 (1978), 431–439 | MR | Zbl

[110] Weigel T. S., “Generation of exceptional groups of Lie type”, Geom. Dedicata, 41:1 (1992), 63–87 | DOI | MR | Zbl

[111] Wonenburger M. J., “Transformations which are products of two involutions”, J. Math. Mech., 16 (1966), 327–338 | MR | Zbl

[112] Wood J. W., “Bundles with totally disconnected structure group”, Comment. Math. Helv., 46 (1971), 257–273 | DOI | MR | Zbl

[113] Zhou L. G., “Scherk's theorem of orthogonal groups over a local ring. I: Expressing orthogonal transformations as the product of symmetries and a semi-symmetry”, Dongbei Shida Xuebao, 1985, no. 2, 17–24 | MR | Zbl