Elementary subgroup of an isotropic reductive group is perfect
Algebra i analiz, Tome 23 (2011) no. 5, pp. 140-154.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{AA_2011_23_5_a3,
     author = {A. Yu. Luzgarev and A. K. Stavrova},
     title = {Elementary subgroup of an isotropic reductive group is perfect},
     journal = {Algebra i analiz},
     pages = {140--154},
     publisher = {mathdoc},
     volume = {23},
     number = {5},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AA_2011_23_5_a3/}
}
TY  - JOUR
AU  - A. Yu. Luzgarev
AU  - A. K. Stavrova
TI  - Elementary subgroup of an isotropic reductive group is perfect
JO  - Algebra i analiz
PY  - 2011
SP  - 140
EP  - 154
VL  - 23
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AA_2011_23_5_a3/
LA  - ru
ID  - AA_2011_23_5_a3
ER  - 
%0 Journal Article
%A A. Yu. Luzgarev
%A A. K. Stavrova
%T Elementary subgroup of an isotropic reductive group is perfect
%J Algebra i analiz
%D 2011
%P 140-154
%V 23
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AA_2011_23_5_a3/
%G ru
%F AA_2011_23_5_a3
A. Yu. Luzgarev; A. K. Stavrova. Elementary subgroup of an isotropic reductive group is perfect. Algebra i analiz, Tome 23 (2011) no. 5, pp. 140-154. http://geodesic.mathdoc.fr/item/AA_2011_23_5_a3/

[1] Petrov V. A., Stavrova A. K., “Elementarnye podgruppy v izotropnykh reduktivnykh gruppakh”, Algebra i analiz, 20:4 (2008), 160–188 | MR

[2] Stavrova A. K., Stroenie izotropnykh reduktivnykh grupp, Kand. dis., SPbGU, SPb., 2009

[3] Suslin A. A., “O strukture spetsialnoi lineinoi gruppy nad koltsami mnogochlenov”, Izv. AN SSSR. Ser. mat., 41:2 (1977), 235–252 | MR | Zbl

[4] Azad H., Barry M., Seitz G., “On the structure of parabolic subgroups”, Comm. Algebra, 18 (1990), 551–562 | DOI | MR | Zbl

[5] Bass H., “$\mathrm K$-theory and stable algebra”, Inst. Hautes Études Sci. Publ. Math., 22 (1964), 5–60 | DOI | MR | Zbl

[6] Bak A., Vavilov N., “Structure of hyperbolic unitary groups. I: Elementary subgroups”, Algebra Colloq., 7 (2000), 159–196 | DOI | MR | Zbl

[7] Borel A., Tits J., “Groupes réductifs”, Inst. Hautes Études Sci. Publ. Math., 27 (1965), 55–150 | DOI | MR

[8] Bourbaki N., Éléments de mathématique, Chapitres 4–6, v. 37, Actualités Sci. Indust., 1337, Groupes et algèbres de Lie, Hermann, Paris, 1968 | MR | Zbl

[9] Demazure M., Grothendieck A. (eds.), Schémas en groupes, Lecture Notes in Math., 151–153, Springer-Verlag, Berlin–New York, 1970 | MR | Zbl

[10] Petrov V., Stavrova A., “The Tits indices over semilocal rings”, Transform. Groups, 16 (2011), 193–217 | DOI | MR | Zbl

[11] Stein M. R., “Generators, relations, and coverings of Chevalley groups over commutative rings”, Amer. J. Math., 93 (1971), 965–1004 | DOI | MR | Zbl

[12] Tits J., “Algebraic and abstract simple groups”, Ann. of Math. (2), 80 (1964), 313–329 | DOI | MR | Zbl

[13] Vaserstein L. N., “Normal subgroups of orthogonal groups over commutative rings”, Amer. J. Math., 110 (1988), 955–973 | DOI | MR | Zbl

[14] Vaserstein L. N., “Normal subgroups of symplectic groups over rings”, $K$-Theory, 2 (1989), 647–673 | DOI | MR | Zbl