Uniform approximation problem for harmonic functions
Algebra i analiz, Tome 23 (2011) no. 4, pp. 136-178.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{AA_2011_23_4_a4,
     author = {M. Ya. Mazalov},
     title = {Uniform approximation problem for harmonic functions},
     journal = {Algebra i analiz},
     pages = {136--178},
     publisher = {mathdoc},
     volume = {23},
     number = {4},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AA_2011_23_4_a4/}
}
TY  - JOUR
AU  - M. Ya. Mazalov
TI  - Uniform approximation problem for harmonic functions
JO  - Algebra i analiz
PY  - 2011
SP  - 136
EP  - 178
VL  - 23
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AA_2011_23_4_a4/
LA  - ru
ID  - AA_2011_23_4_a4
ER  - 
%0 Journal Article
%A M. Ya. Mazalov
%T Uniform approximation problem for harmonic functions
%J Algebra i analiz
%D 2011
%P 136-178
%V 23
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AA_2011_23_4_a4/
%G ru
%F AA_2011_23_4_a4
M. Ya. Mazalov. Uniform approximation problem for harmonic functions. Algebra i analiz, Tome 23 (2011) no. 4, pp. 136-178. http://geodesic.mathdoc.fr/item/AA_2011_23_4_a4/

[1] Keldysh M. V., “O razreshimosti i ustoichivosti zadachi Dirikhle”, Uspekhi mat. nauk, 1941, no. 8, 171–231 | MR | Zbl

[2] Deny J., “Systèmes totaux de fonctions harmoniques”, Ann. Inst. Fourier (Grenoble), 1 (1949), 103–113 | DOI | MR

[3] Vitushkin A. G., “Analiticheskaya emkost mnozhestv v zadachakh teorii priblizhenii”, Uspekhi mat. nauk, 22:6 (1967), 141–199 | MR | Zbl

[4] O'Farrell A. G., “Uniform approximation by harmonic functions”, Linear and complex analysis, Problem Book 3, Part II, Lecture Notes in Math., 1574, Springer-Verlag, 1994, Problem 12.15, 121

[5] Paramonov P. V., “O garmonicheskikh approksimatsiyakh v $\mathrm C^1$-norme”, Mat. sb., 181:10 (1990), 1341–1365 | MR | Zbl

[6] Stein I. M., Singulyarnye integraly i differentsialnye svoistva funktsii, Mir, M., 1973 | MR | Zbl

[7] Harvey R., Polking J., “A notion of capacity which characterizes removable singularities”, Trans. Amer. Math. Soc., 169 (1972), 183–195 | DOI | MR | Zbl

[8] Mazalov M. Ya., “Kriterii ravnomernoi priblizhaemosti na proizvolnykh kompaktakh dlya reshenii ellipticheskikh uravnenii”, Mat. sb., 199:1 (2008), 15–46 | MR | Zbl

[9] Mazalov M. Ya., “O ravnomernykh priblizheniyakh bianaliticheskimi funktsiyami na proizvolnykh kompaktakh v $\mathbb C$”, Mat. sb., 195:5 (2004), 79–102 | MR | Zbl

[10] Verdera J., “The uniform approximation problem for the square of the Cauchy–Riemann operator”, Linear and complex analysis, Problem Book 3, Part II, Lecture Notes in Math., 1574, Springer-Verlag, 1994, Problem 12.16, 122–123

[11] Paramonov P. V., “Nekotorye novye kriterii ravnomernoi priblizhaemosti funktsii ratsionalnymi drobyami”, Mat. sb., 186:9 (1995), 97–112 | MR | Zbl

[12] Verdera Dzh., Melnikov M. S., Paramonov P. V., “$C^1$-approksimatsiya i prodolzhenie subgarmonicheskikh funktsii”, Mat. sb., 192:4 (2001), 37–58 | MR | Zbl

[13] Karleson L., Izbrannye problemy teorii isklyuchitelnykh mnozhestv, Mir, M., 1971 | MR | Zbl

[14] Harvey R., Polking J., “Removable singularities of solutions of linear partial differential equations”, Acta Math., 125 (1970), 39–56 | DOI | MR | Zbl

[15] Tarkhanov N. N., Ryad Lorana dlya reshenii ellipticheskikh sistem, Nauka, Novosibirsk, 1991 | MR | Zbl

[16] Paramonov P. V., Fedorovskii K. Yu., “O ravnomernoi i $\mathrm C^1$-priblizhaemosti funktsii na kompaktakh v $\mathbb R^2$ resheniyami ellipticheskikh uravnenii vtorogo poryadka”, Mat. sb., 190:2 (1999), 123–144 | MR | Zbl

[17] Landkof N. S., Osnovy sovremennoi teorii potentsiala, Nauka, M., 1966 | MR | Zbl

[18] David G., Wavelets and singular integrals on curves and surfaces, Lecture Notes in Math., 1465, Springer-Verlag, Berlin, 1991 | MR

[19] Rudin U., Funktsionalnyi analiz, Mir, M., 1975 | MR

[20] Mateu J., Orobitg J., “Lipshitz approximation by harmonic functions and some applications to spectral sinthesis”, Indiana Univ. Math. J., 39 (1990), 703–736 | DOI | MR | Zbl

[21] Vladimirov V. S., Uravneniya matematicheskoi fiziki, Nauka, M., 1988 | MR

[22] Verdera J., “Removability, capacity and approximation”, Complex Potential Theory (Montreal, PQ, 1993), NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci., 439, Kluwer, Dordrecht, 1994, 419–473 | MR | Zbl