Parabolic factorizations of split classical groups
Algebra i analiz, Tome 23 (2011) no. 4, pp. 1-30.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{AA_2011_23_4_a0,
     author = {N. A. Vavilov and S. S. Sinchuk},
     title = {Parabolic factorizations of split classical groups},
     journal = {Algebra i analiz},
     pages = {1--30},
     publisher = {mathdoc},
     volume = {23},
     number = {4},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AA_2011_23_4_a0/}
}
TY  - JOUR
AU  - N. A. Vavilov
AU  - S. S. Sinchuk
TI  - Parabolic factorizations of split classical groups
JO  - Algebra i analiz
PY  - 2011
SP  - 1
EP  - 30
VL  - 23
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AA_2011_23_4_a0/
LA  - ru
ID  - AA_2011_23_4_a0
ER  - 
%0 Journal Article
%A N. A. Vavilov
%A S. S. Sinchuk
%T Parabolic factorizations of split classical groups
%J Algebra i analiz
%D 2011
%P 1-30
%V 23
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AA_2011_23_4_a0/
%G ru
%F AA_2011_23_4_a0
N. A. Vavilov; S. S. Sinchuk. Parabolic factorizations of split classical groups. Algebra i analiz, Tome 23 (2011) no. 4, pp. 1-30. http://geodesic.mathdoc.fr/item/AA_2011_23_4_a0/

[1] Bass Kh., Algebraicheskaya $K$-teoriya, Mir, M., 1973 | MR | Zbl

[2] Burbaki N., Gruppy i algebry Li, Gl. IV–VI, Mir, M., 1972 | MR | Zbl

[3] Vavilov N. A., “Podgruppy polnoi lineinoi gruppy nad koltsom, soderzhaschie gruppu kletochno treugolnykh matrits, II”, Vestn. Leningr. un-ta. Mat., mekh., astronom., 1982, no. 3, 5–9 | MR

[4] Vavilov N. A., “Parabolicheskie podgruppy grupp Shevalle nad kommutativnym koltsom”, Zap. nauch. semin. LOMI, 116, 1982, 20–43 | MR | Zbl

[5] Vavilov N. A., Plotkin E. B., “Setevye podgruppy grupp Shevalle. II: Razlozhenie Gaussa”, Zap. nauch. semin. LOMI, 114, 1982, 62–76 | MR | Zbl

[6] Vavilov N. A., Sinchuk S. S., “Razlozheniya tipa Dennisa–Vasershteina”, Zap. nauch. semin. POMI, 375, 2010, 48–60 | MR | Zbl

[7] Vasershtein L. N., “O stabilizatsii obschei lineinoi gruppy nad koltsom”, Mat. sb., 79(121):3 (1969), 405–424 | MR | Zbl

[8] Vasershtein L. N., “Stabilizatsiya unitarnykh i ortogonalnykh grupp nad koltsom s involyutsiei”, Mat. sb., 81(123):3 (1970), 328–351 | MR | Zbl

[9] Vasershtein L. N., “Stabilnyi rang kolets i razmernost topologicheskikh prostranstv”, Funkts. anal. i ego pril., 5:2 (1971), 17–27 | MR | Zbl

[10] Vasershtein L. N., “Stabilizatsiya dlya klassicheskikh grupp nad koltsami”, Mat. sb., 93(135):2 (1974), 268–295 | MR | Zbl

[11] Petrov V. A., “Nechetnye unitarnye gruppy”, Zap. nauch. semin. POMI, 305, 2003, 195–225 | MR | Zbl

[12] Petrov V. A., Nadgruppy klassicheskikh grupp, kand. dis., SPbGU, SPb., 2005, 129 pp.

[13] Plotkin E. B., Setevye podgruppy grupp Shevalle i voprosy stabilizatsii $\mathrm K_1$-funktora, kand. dis., LGU, L., 1985, 118 pp.

[14] Plotkin E. B., “Syur'ektivnaya stabilizatsiya $\mathrm K_1$-funktora dlya nekotorykh isklyuchitelnykh grupp Shevalle”, Zap. nauch. semin. POMI, 198, 1991, 65–88 | MR | Zbl

[15] Stepanov A. V., Usloviya stabilnosti v teorii lineinykh grupp nad koltsami, kand. dis., LGU, L., 1987, 112 pp.

[16] Suslin A. A., Tulenbaev M. S., “Teorema o stabilizatsii dlya $\mathrm K_2$-funktora Milnora”, Zap. nauch. semin. LOMI, 64, 1976, 131–152 | MR | Zbl

[17] Abe E., Suzuki K., “On normal subgroups of Chevalley groups over commutative rings”, Tôhoku Math. J. (2), 28:2 (1976), 185–198 | DOI | MR | Zbl

[18] Bak A., The stable structure of quadratic modules, Thesis, Columbia Univ., 1969

[19] Bak A., Petrov V., Guoping Tang, “Stability for quadratic $\mathrm K_1$”, $\mathrm K$-Theory, 30:1 (2003), 1–11 | MR | Zbl

[20] Bak A., Guoping Tang, “Stability for Hermitian $\mathrm K_1$”, J. Pure Appl. Algebra, 150 (2000), 109–121 | DOI | MR

[21] Bak A., Vavilov N., “Structure of hyperbolic unitary groups. I: Elementary subgroups”, Algebra Colloq., 7:2 (2000), 159–196 | DOI | MR | Zbl

[22] Bass H., “$\mathrm K$-theory and stable algebra”, Inst. Hautes Études Sci. Publ. Math., 22 (1964), 5–60 | DOI | MR | Zbl

[23] Bass H., “Unitary algebraic $\mathrm K$-theory”, Algebraic $\mathrm K$-Theory. III. Hermitian $\mathrm K$-Theory and Geometric Applications, Proc. Conf. (Battelle Memorial Inst., Seattle, Wash., 1972), Lecture Notes in Math., 343, Springer, Berlin, 1973, 57–265 | MR

[24] Demazure M., Grothendieck A., Schémas en groupes, v. I, Lecture Notes in Math., 151, Springer-Verlag, Berlin–New York, 1970 ; v. II, Lecture Notes in Math., 152 ; v. III, Lecture Notes in Math., 153 | MR | Zbl | MR | Zbl | MR | Zbl

[25] Dennis R. K., “Stability for $\mathrm K_2$”, Proc. Conf. on Orders, Group Rings and Related Topics (Ohio State Univ., Columbia, Ohio, 1972), Lecture Notes in Math., 353, Springer, Berlin, 1973, 85–94 | MR

[26] Dennis R. K., Vaserstein L. N., “On a question of M. Newman on the number of commutators”, J. Algebra, 118 (1988), 150–161 | DOI | MR | Zbl

[27] Erovenko I. V., “$\mathrm {SL}_N(F[x])$ is not boundedly generated by elementary matrices: explicit proof”, Electron. J. Linear Algebra, 11 (2004), 162–167 | MR | Zbl

[28] Estes D. R., Ohm J., “Stable range in commutative rings”, J. Algebra, 7:3 (1967), 343–362 | DOI | MR | Zbl

[29] Habdank G., A classification of subgroups of $\Lambda$-quadratic groups normalized by relative elementary subgroups, Dissertation Universität Bielefeld, 1987, 71 pp.

[30] Habdank G., “A classification of subgroups of $\Lambda$-quadratic groups normalized by relative elementary groups”, Adv. Math., 110:2 (1995), 191–233 | DOI | MR | Zbl

[31] Hahn A. J., O'Meara O. T., The classical groups and $\mathrm K$-theory, Grundlehren Math. Wiss., 291, Springer-Verlag, Berlin, 1989 | MR | Zbl

[32] Hazrat R., Vavilov N., “Bak's work on $\mathrm K$-theory of rings”, With an appendix by Max Karoubi, J. K-Theory, 4:1 (2009), 1–65 | DOI | MR | Zbl

[33] van der Kallen W., “Injective stability for $\mathrm K_2$”, Algebraic K-Theory, Proc. Conf. (Northwestern Univ., Evanston, IL, 1976), Lecture Notes in Math., 551, Springer, Berlin, 1976, 77–154 | MR

[34] van der Kallen W., “$\mathrm{SL}_3(\mathbb C[x])$ does not have bounded word length”, Algebraic $\mathrm K$-Theory, Part I (Oberwolfach, 1980), Lecture Notes in Math., 966, Springer, Berlin–New York, 1982, 357–361 | MR

[35] Knus M.-A., Quadratic and Hermitian forms over rings, Grundlehren Math. Wiss., 294, Springer-Verlag, Berlin, 1991 | MR | Zbl

[36] Kolster M., “On injective stability for $\mathrm K_2$”, Algebraic $\mathrm K$-Theory, Part I (Oberwolfach, 1980), Lecture Notes in Math., 966, Springer, Berlin–New York, 1982, 128–168 | MR

[37] Magurn B. A., van der Kallen W., Vaserstein L. N., “Absolute stable rank and Witt cancellation for noncommutative rings”, Invent. Math., 91 (1988), 525–542 | DOI | MR | Zbl

[38] Matsumoto H., “Sur les sous-groupes arithmétiques des groupes semi-simples déployés”, Ann. Sci. École Norm. Sup. (4), 2 (1969), 1–62 | MR | Zbl

[39] Petrov V., “Overgroups of unitary groups”, $\mathrm K$-Theory, 29 (2003), 147–174 | MR | Zbl

[40] Plotkin E., “Stability theorems of $\mathrm K_1$-functors for Chevalley groups”, Nonassociative Algebras and Related Topics (Hiroshima, 1990), World Sci. Publ., River Edge, NJ, 1991, 203–217 | MR | Zbl

[41] Plotkin E., “On the stability of the $\mathrm K_1$-functor for Chevalley groups of type $\mathrm E_7$”, J. Algebra, 210 (1998), 67–85 | DOI | MR | Zbl

[42] Plotkin E., Stein M. R., Vavilov N., Stability of $\mathrm K$-functors modeled on Chevalley groups, Unpublished manuscript, revisited, 2001 (to appear)

[43] Sharpe R. W., “On the structure of the unitary Steinberg group”, Ann. of Math. (2), 96:3 (1972), 444–479 | DOI | MR | Zbl

[44] Sharpe R. W., “On the structure of the Steinberg group $\mathrm{St}(\Lambda)$”, J. Algebra, 68 (1981), 453–467 | DOI | MR | Zbl

[45] Stafford J. T., “Stable structure of noncommutative Noetherian rings”, J. Algebra, 47 (1977), 244–267 | DOI | MR | Zbl

[46] Stafford J. T., “On the stable range of right Noetherian rings”, Bull. London Math. Soc., 13 (1981), 39–41 | DOI | MR | Zbl

[47] Stafford J. T., “Absolute stable rank and quadratic forms over noncommutative rings”, $\mathrm K$-Theory, 4 (1990), 121–130 | MR | Zbl

[48] Stavrova A., “Normal structure of maximal parabolic subgroups in Chevalley groups over rings”, Algebra Colloq., 16:4 (2009), 631–648 | MR | Zbl

[49] Stein M. R., “Surjective stability in dimension 0 for $\mathrm K_2$ and related functors”, Trans. Amer. Math. Soc., 178 (1973), 165–191 | MR | Zbl

[50] Stein M. R., “Stability theorems for $\mathrm K_1$, $\mathrm K_2$ and related functors modeled on Chevalley groups”, Japan. J. Math., 4:1 (1978), 77–108 | MR | Zbl

[51] Stepanov A., Vavilov N., “Decomposition of transvections: a theme with variations”, $\mathrm K$-Theory, 19 (2000), 109–153 | MR | Zbl

[52] Vavilov N. A., Luzgarev A. Yu., Stepanov A. V., “Calculations in exceptional groups over rings”, Zap. nauch. semin. POMI, 373, 2009, 48–72 | MR