Voir la notice de l'article provenant de la source Math-Net.Ru
@article{AA_2011_23_3_a7, author = {S. A. Nazarov}, title = {Asymptotics of trapped modes and eigenvalues below the continuous spectrum of a~waveguide with a~thin shielding obstacle}, journal = {Algebra i analiz}, pages = {216--260}, publisher = {mathdoc}, volume = {23}, number = {3}, year = {2011}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/AA_2011_23_3_a7/} }
TY - JOUR AU - S. A. Nazarov TI - Asymptotics of trapped modes and eigenvalues below the continuous spectrum of a~waveguide with a~thin shielding obstacle JO - Algebra i analiz PY - 2011 SP - 216 EP - 260 VL - 23 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/AA_2011_23_3_a7/ LA - ru ID - AA_2011_23_3_a7 ER -
S. A. Nazarov. Asymptotics of trapped modes and eigenvalues below the continuous spectrum of a~waveguide with a~thin shielding obstacle. Algebra i analiz, Tome 23 (2011) no. 3, pp. 216-260. http://geodesic.mathdoc.fr/item/AA_2011_23_3_a7/
[1] Ladyzhenskaya O. A., Kraevye zadachi matematicheskoi fiziki, Nauka, M., 1973 | MR
[2] Mikhlin S. G., Lineinye uravneniya v chastnykh proizvodnykh, Vyssh. shk., M., 1977 | MR
[3] Birman M. Sh., Solomyak M. Z., Spektralnaya teoriya samosopryazhennykh operatorov v gilbertovom prostranstve, LGU, L., 1980 | MR
[4] Wilcox C. H., Scattering theory for diffraction gratings, Appl. Math. Sci., 46, Springer, New York, 1984 | MR | Zbl
[5] Linton C. M., McIver P., “Embedded trapped modes in water waves and acoustics”, Wave Motion, 45 (2007), 16–29 | DOI | MR
[6] Mazya V. G., Nazarov S. A., Plamenevskii B. A., “Asimptoticheskie razlozheniya sobstvennykh chisel kraevykh zadach dlya operatora Laplasa v oblastyakh s malymi otverstiyami”, Izv. AN SSSR. Ser. mat., 48:2 (1984), 347–371 | MR | Zbl
[7] Mazja W. G., Nasarow S. A., Plamenewski B. A., Asymptotische Theorie elliptischer Randwertaufgaben in singulär gestörten Gebieten, v. I, Math. Lehrbücher Monogr. II. Abt. Math. Monogr., 82, Akademie-Verlag, Berlin, 1991 ; Maz'ya V., Nazarov S., Plamenevskij B., Asymptotic theory of elliptic boundary value problems in singularly perturbed domains, V. 1, Oper. Theory Adv. Appl., 111, Birkhäuser Verlag, Basel, 2000 | MR | MR
[8] Kamotskii I. V., Nazarov S. A., “Uprugie volny, lokalizovannye okolo periodicheskikh semeistv defektov”, Dokl. RAN, 368:6 (1999), 771–773 | MR | Zbl
[9] Kamotskii I. V., Nazarov S. A., “Eksponentsialno zatukhayuschie resheniya zadachi o difraktsii na zhestkoi periodicheskoi reshetke”, Mat. zametki, 73:1 (2003), 138–140 | MR | Zbl
[10] Duclos P., Exner P., “Curvature-induced bound states in quantum waveguides in two and three dimensions”, Rev. Math. Phys., 7:1 (1995), 73–102 | DOI | MR | Zbl
[11] Borisov D., Exner P., Gagyl'shin R., Krejčiřik D., “Bound states in weakly deformed strips and layers”, Ann. H. Poincaré, 2:3 (2001), 553–572 | DOI | MR | Zbl
[12] Gagyl'shin R., “On regular and singular perturbations of acoustic and quantum waveguides”, C. R. Mecanique, 332:3 (2004), 647–652 | DOI
[13] Borisov D., “Asymptotic behavior of the spectrum of a waveguide with distant perturbations”, Math. Phys. Anal. Geom., 10 (2007), 155–196 | DOI | MR | Zbl
[14] Exner P., Šeba P., Tater M., Vaněk D., “Bound states and scattering in quantum waveguides coupled laterally through a boundary window”, J. Math. Phys., 37:10 (1996), 4867–4887 | DOI | MR | Zbl
[15] Borisov D., Exner P., Gagyl'shin R., “Geometric coupling thresholds in a two-dimensional strip”, J. Math. Phys., 43 (2002), 6265–6278 | DOI | MR | Zbl
[16] Borisov D. I., “Diskretnyi spektr pary nesimmetrichnykh volnovodov, soedinennykh oknom”, Mat. sb., 197:4 (2006), 3–32 | MR | Zbl
[17] Kamotskii I. V., Nazarov S. A., “Anomalii Vuda i poverkhnostnye volny v zadache rasseyaniya na periodicheskoi granitse, I”, Mat. sb., 190:1 (1999), 109–138 | MR | Zbl
[18] Kamotskii I. V., Nazarov S. A., “Anomalii Vuda i poverkhnostnye volny v zadache rasseyaniya na periodicheskoi granitse, II”, Mat. sb., 190:2 (1999), 43–70 | MR | Zbl
[19] Kamotski I. V., Nazarov S. A., “Trapped modes, surface waves and Wood's anomalies for gently sloped periodic boundaries”, C. R. Acad. Sci. Ser. 2, 328 (2000), 423–428 | Zbl
[20] Vishik M. I., Lyusternik L. A., “Regulyarnoe vyrozhdenie i pogranichnyi sloi dlya lineinykh differentsialnykh uravnenii s malym parametrom”, Uspekhi mat. nauk, 12:5 (1957), 3–122 | MR | Zbl
[21] Kondratev V. A., “Kraevye zadachi dlya ellipticheskikh uravnenii v oblastyakh s konicheskimi ili uglovymi tochkami”, Tr. Mosk. mat. o-va, 16, 1967, 209–318
[22] Mazya V. G., Plamenevskii B. A., “O koeffitsientakh v asimptotike reshenii ellipticheskikh kraevykh zadach v oblastyakh s konicheskimi tochkami”, Math. Nachr., 76 (1977), 29–60 | DOI
[23] Mazya V. G., Plamenevskii B. A., “Otsenki v $L_p$ i v klassakh Gëldera i printsip maksimuma Miranda–Agmona dlya reshenii ellipticheskikh kraevykh zadach v oblastyakh s osobymi tochkami na granitse”, Math. Nachr., 81 (1978), 25–82 | DOI
[24] Nazarov S. A., “Polinomialnoe svoistvo samosopryazhennykh ellipticheskikh kraevykh zadach i algebraicheskoe opisanie ikh atributov”, Uspekhi mat. nauk, 54:5 (1999), 77–142 | MR | Zbl
[25] Nazarov S. A., Plamenevskii B. A., Ellipticheskie zadachi v oblastyakh s kusochno gladkoi granitsei, Nauka, M., 1991
[26] Kozlov V. A., Maz'ya V. G., Rossmann J., Elliptic boundary value problems in domains with point singularities, Math. Surveys Monogr., 52, Amer. Math. Soc., Providence, RI, 1997 | MR | Zbl
[27] Nazarov S. A., “Properties of spectra of boundary value problems in cylindrical and quasicylindrical domains”, Sobolev Spaces in Mathematics, v. II, Int. Math. Ser. (N.Y.), 9, ed. Maz'ya V., Springer, New York, 2009, 261–309 | MR | Zbl
[28] Kondratev V. A., “O gladkosti resheniya zadachi Dirikhle dlya ellipticheskikh uravnenii vtorogo poryadka v kusochno-gladkoi oblasti”, Differents. uravneniya, 6:10 (1970), 1831–1843
[29] Mazya V. G., Plamenevskii B. A., “$L_p$-otsenki reshenii ellipticheskikh kraevykh zadach v oblastyakh s rebrami”, Tr. Mosk. mat. o-va, 37, 1978, 49–93 | MR
[30] Nazarov S. A., Plamenevskii B. A., “Zadacha Neimana dlya samosopryazhennykh ellipticheskikh sistem v oblasti s kusochno gladkoi granitsei”, Tr. Leningr. mat. o-va, 1, 1990, 174–211 | MR
[31] Nazarov S. A., Romashev Yu. A., “Izmenenie koeffitsienta intensivnosti pri razrushenii peremychki mezhdu dvumya kollinearnymi treschinami”, Izv. AN ArmSSR. Mekhanika, 1982, no. 4, 30–40 | Zbl
[32] Nazarov S. A., “Asimptoticheskie usloviya v tochkakh, samosopryazhennye rasshireniya operatorov i metod sraschivaemykh razlozhenii”, Tr. S.-Peterburg. mat. o-va, 5, 1998, 112–183 | Zbl
[33] Ilin A. M., Soglasovanie asimptoticheskikh razlozhenii reshenii kraevykh zadach, Nauka, M., 1989 | MR
[34] Nazarov S. A., Plamenevskii B. A., “Ellipticheskie zadachi s usloviyami izlucheniya na rebrakh granitsy”, Mat. sb., 183:10 (1992), 13–44 | MR | Zbl
[35] Nazarov S. A., Plamenevskii B. A., “Samosopryazhennye ellipticheskie zadachi: operatory rasseyaniya i polyarizatsii na rebrakh granitsy”, Algebra i analiz, 6:4 (1994), 157–186 | MR | Zbl
[36] Ilin A. M., “Kraevaya zadacha dlya ellipticheskogo uravneniya vtorogo poryadka v oblasti s uzkoi schelyu. I: Dvumernyi sluchai”, Mat. sb., 99(141):4 (1976), 514–537 | MR | Zbl
[37] Nazarov S. A., Olyushin M. V., “O vozmuscheniyakh sobstvennykh znachenii zadachi Neimana vsledstvie variatsii granitsy oblasti”, Algebra i analiz, 5:2 (1993), 169–188 | MR | Zbl
[38] Nazarov S. A., Shpekovius-Noigebauer M., “Primenenie energeticheskogo kriteriya razrusheniya dlya opredeleniya formy slaboiskrivlennoi treschiny”, Prikl. mekh. i tekhn. fiz., 47:5 (2006), 119–130 | MR | Zbl
[39] Nazarov S. A., “Asimptoticheskoe modelirovanie zadachi s kontrastnymi zhestkostyami”, Zap. nauch. semin. POMI, 369, 2009, 164–201
[40] Mazya V. G., Nazarov S. A., “Paradoksy predelnogo perekhoda v resheniyakh kraevykh zadach pri approksimatsii gladkikh oblastei mnogougolnymi”, Izv. AN SSSR. Ser. mat., 50:6 (1986), 1156–1177 | MR | Zbl
[41] Nazarov S. A., Olyushin M. V., “Priblizhenie gladkikh konturov mnogougolnymi. Paradoksy v zadachakh dlya sistemy Lame”, Izv. RAN. Ser. mat., 61:3 (1997), 159–186 | MR | Zbl
[42] Parton V. Z., Perlin P. I., Metody matematicheskoi teorii uprugosti, Nauka, M., 1981 | MR | Zbl