Conway polynomial and Magnus expansion
Algebra i analiz, Tome 23 (2011) no. 3, pp. 175-188.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{AA_2011_23_3_a5,
     author = {S. V. Duzhin},
     title = {Conway polynomial and {Magnus} expansion},
     journal = {Algebra i analiz},
     pages = {175--188},
     publisher = {mathdoc},
     volume = {23},
     number = {3},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AA_2011_23_3_a5/}
}
TY  - JOUR
AU  - S. V. Duzhin
TI  - Conway polynomial and Magnus expansion
JO  - Algebra i analiz
PY  - 2011
SP  - 175
EP  - 188
VL  - 23
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AA_2011_23_3_a5/
LA  - ru
ID  - AA_2011_23_3_a5
ER  - 
%0 Journal Article
%A S. V. Duzhin
%T Conway polynomial and Magnus expansion
%J Algebra i analiz
%D 2011
%P 175-188
%V 23
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AA_2011_23_3_a5/
%G ru
%F AA_2011_23_3_a5
S. V. Duzhin. Conway polynomial and Magnus expansion. Algebra i analiz, Tome 23 (2011) no. 3, pp. 175-188. http://geodesic.mathdoc.fr/item/AA_2011_23_3_a5/

[1] Bar-Natan D., “Vassiliev and quantum invariants of braids”, The interface of Knots and Physics (San Francisco, CA, 1995), Proc. Sympos. Appl. Math., 51, Amer. Math. Soc., Providence, RI, 1996, 129–144, arXiv: q-alg/9607001 | MR | Zbl

[2] Birman J. S., Braids, links and mapping class groups, Ann. of Math. Stud., 82, Princeton Univ. Press, Princeton, 1974 | MR

[3] Chmutov S., Duzhin S., Mostovoy J., Introduction to Vassiliev knot invariants, Cambridge Univ. Press draft available online at http://www.pdmi.ras.ru/~duzhin/papers/cdbook/

[4] Drinfeld B., “O kvazitreugolnykh kvazikhopfovykh algebrakh i odnoi gruppe, tesno svyazannoi s $\mathrm{Gal}(\overline{\mathbb Q}/\mathbb Q)$”, Algebra i analiz, 2:4 (1990), 149–181 | MR | Zbl

[5] Duzhin S., Program and data files related to the Drinfeld associator Online at http://www.pdmi.ras.ru/~arnsem/dataprog/

[6] Etingof P., Schiffmann O., Lectures on quantum groups, Internat. Press, Boston, MA, 1998 | MR

[7] Graham R., Knuth D., Patashnik O., Concrete mathematics. A foundation for computer science, Addison-Wesley, Reading, MA, 1994 | MR | Zbl

[8] Hoffman M. E., “Multiple harmonic series”, Pacific J. Math., 152 (1992), 275–290 | MR | Zbl

[9] Le T. T. Q., Murakami J., “The Kontsevich's integral for the Kauffman polynomial”, Nagoya Math. J., 142 (1996), 39–65 | MR | Zbl

[10] Mostovoy J., Stanford T., “On a map from pure braids to knots”, J. Knot Theory Ramifications, 12 (2003), 417–425 http://www.math.cinvestav.mx/~mostovoy/papers.html | DOI | MR | Zbl

[11] Mostovoy J., Willerton S., “Free groups and finite-type invariants of pure braids”, Math. Proc. Cambridge Philos. Soc., 132 (2002), 117–130 http://www.math.cinvestav.mx/~mostovoy/papers.html | DOI | MR | Zbl

[12] Murasugi K., Knot theory and its applications, Birkhäuser, Boston, MA, 1996 | MR | Zbl

[13] Papadima S., “The universal finite-type invariant for braids, with integer coefficients”, Topology Appl., 118 (2002), 169–185 | DOI | MR | Zbl

[14] Petitot M., Tables of relations between MZV up to weight 16 Online at http://www2.lifl.fr/~petitot/

[15] Prasolov V. V., Sosinskii A. B., Uzly, zatsepleniya, kosy i trekhmernye mnogoobraziya, MTsNMO, M., 1997