Voir la notice de l'article provenant de la source Math-Net.Ru
@article{AA_2011_23_3_a4, author = {H. Dong}, title = {Parabolic equations with variably partially {VMO} coefficients}, journal = {Algebra i analiz}, pages = {150--174}, publisher = {mathdoc}, volume = {23}, number = {3}, year = {2011}, language = {en}, url = {http://geodesic.mathdoc.fr/item/AA_2011_23_3_a4/} }
H. Dong. Parabolic equations with variably partially VMO coefficients. Algebra i analiz, Tome 23 (2011) no. 3, pp. 150-174. http://geodesic.mathdoc.fr/item/AA_2011_23_3_a4/
[1] Acerbi E., Mingione G., “Gradient estimates for a class of parabolic systems”, Duke Math. J., 136:2 (2007), 285–320 | DOI | MR | Zbl
[2] Byun S., Wang L., “$L^p$-estimates for general nonlinear elliptic equations”, Indiana Univ. Math. J., 56:6 (2007), 3193–3221 | DOI | MR | Zbl
[3] Agmon S., Douglis A., Nirenberg L., “Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions, I”, Comm. Pure Appl. Math., 12 (1959), 623–727 ; “II”, Comm. Pure Appl. Math., 17 (1964), 35–92 | DOI | MR | Zbl | DOI | MR | Zbl
[4] Bramanti M., Cerutti M., “$W_p^{1,2}$ solvability for the Cauchy–Dirichlet problem for parabolic equations with VMO coefficients”, Comm. Partial Differential Equations, 18:9–10 (1993), 1735–1763 | DOI | MR | Zbl
[5] Chiarenza F., Frasca M., Longo P., “Interior $W^{2,p}$ estimates for nondivergence elliptic equations with discontinuous coefficients”, Ricerche Mat., 40:1 (1991), 149–168 | MR | Zbl
[6] Chiarenza F., Frasca M., Longo P., “$W^{2,p}$-solvability of the Dirichlet problem for nondivergence elliptic equations with VMO coefficients”, Trans. Amer. Math. Soc., 336:2 (1993), 841–853 | DOI | MR | Zbl
[7] Dong H., “Solvability of parabolic equations in divergence form with partially BMO coefficients”, J. Funct. Anal., 258:7 (2010), 2145–2172 | DOI | MR | Zbl
[8] Dong H., Kim D., “Elliptic equations in divergence form with partially BMO coefficients”, Arch. Rational Mech. Anal., 196:1 (2010), 25–70 | DOI | MR | Zbl
[9] Dong H., Krylov N. V., “Second-order elliptic and parabolic equations with $B(\mathbb R^2,VMO)$ coefficients”, Trans. Amer. Math. Soc., 362:12 (2010), 6477–6494 | DOI | MR | Zbl
[10] Di Fazio G., “$L^p$ estimates for divergence form elliptic equations with discontinuous coefficients”, Boll. Un. Mat. Ital. A (7), 10:2 (1996), 409–420 | MR | Zbl
[11] Kim D., “Parabolic equations with measurable coefficients, II”, J. Math. Anal. Appl., 334:1 (2007), 534–548 | DOI | MR | Zbl
[12] Kim D., “Elliptic and parabolic equations with measurable coefficients in $L_p$-spaces with mixed norms”, Methods Appl. Anal., 15:4 (2008), 437–467 | MR
[13] Kim D., “Parabolic equations with partially BMO coefficients and boundary value problems in Sobolev spaces with mixed norms”, Potential Anal., 33:1 (2010), 17–46 | DOI | MR | Zbl
[14] Kim D., Krylov N. V., “Elliptic differential equations with coefficients measurable with respect to one variable and VMO with respect to the others”, SIAM J. Math. Anal., 39:2 (2007), 489–506 | DOI | MR | Zbl
[15] Kim D., Krylov N. V., “Parabolic equations with measurable coefficients”, Potential Anal., 26:4 (2007), 345–361 | DOI | MR | Zbl
[16] Krylov N. V., Nelineinye ellipticheskie i parabolicheskie uravneniya vtorogo poryadka, Nauka, M., 1985 | MR | Zbl
[17] Krylov N. V., “Parabolic and elliptic equations with VMO coefficients”, Comm. Partial Differential Equations, 32:1–3 (2007), 453–475 | DOI | MR | Zbl
[18] Krylov N. V., “Parabolic equations with VMO coefficients in Sobolev spaces with mixed norms”, J. Funct. Anal., 250:2 (2007), 521–558 | DOI | MR | Zbl
[19] Krylov N. V., “Second-order elliptic equations with variably partially VMO coefficients”, J. Funct. Anal., 257:6 (2009), 1695–1712 | DOI | MR | Zbl
[20] Ladyzhenskaya O. A., Solonnikov V. A., Uraltseva N. N., Lineinye i kvazilineinye uravneniya parabolicheskogo tipa, Nauka, M., 1967
[21] Lieberman G., Second order parabolic differential equations, World Sci. Publ. Co., Inc., River Edge, NJ, 1996 | MR | Zbl
[22] Lieberman G., “A mostly elementary proof of Morrey space estimates for elliptic and parabolic equations with VMO coefficients”, J. Funct. Anal., 201:2 (2003), 457–479 | DOI | MR | Zbl
[23] Softova L., Weidemaier P., “Quasilinear parabolic problems in spaces of maximal regularity”, J. Nonlinear Convex Anal., 7 (2006), 529–540 | MR | Zbl
[24] Weidemaier P., “Maximal regularity for parabolic equations with inhomogeneous boundary conditions in Sobolev spaces with mixed $L_p$-norm”, Electron. Res. Announc. Amer. Math. Soc., 8 (2002), 47–51 | DOI | MR | Zbl