Parabolic equations with variably partially VMO coefficients
Algebra i analiz, Tome 23 (2011) no. 3, pp. 150-174.

Voir la notice de l'article provenant de la source Math-Net.Ru

The $W^{1,2}_p$-solvability of second-order parabolic equations in nondivergence form in the whole space is proved for $p\in(1,\infty)$. The leading coefficients are assumed to be measurable in one spatial direction and have vanishing mean oscillation (VMO) in the orthogonal directions and the time variable in each small parabolic cylinder with direction allowed to depend on the cylinder. This extends a recent result by Krylov for elliptic equations. The novelty in the current paper is that the restriction $p>2$ is removed.
Keywords: second-order equations, vanishing mean oscillation, partially VMO coefficients, Sobolev spaces.
@article{AA_2011_23_3_a4,
     author = {H. Dong},
     title = {Parabolic equations with variably partially {VMO} coefficients},
     journal = {Algebra i analiz},
     pages = {150--174},
     publisher = {mathdoc},
     volume = {23},
     number = {3},
     year = {2011},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/AA_2011_23_3_a4/}
}
TY  - JOUR
AU  - H. Dong
TI  - Parabolic equations with variably partially VMO coefficients
JO  - Algebra i analiz
PY  - 2011
SP  - 150
EP  - 174
VL  - 23
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AA_2011_23_3_a4/
LA  - en
ID  - AA_2011_23_3_a4
ER  - 
%0 Journal Article
%A H. Dong
%T Parabolic equations with variably partially VMO coefficients
%J Algebra i analiz
%D 2011
%P 150-174
%V 23
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AA_2011_23_3_a4/
%G en
%F AA_2011_23_3_a4
H. Dong. Parabolic equations with variably partially VMO coefficients. Algebra i analiz, Tome 23 (2011) no. 3, pp. 150-174. http://geodesic.mathdoc.fr/item/AA_2011_23_3_a4/

[1] Acerbi E., Mingione G., “Gradient estimates for a class of parabolic systems”, Duke Math. J., 136:2 (2007), 285–320 | DOI | MR | Zbl

[2] Byun S., Wang L., “$L^p$-estimates for general nonlinear elliptic equations”, Indiana Univ. Math. J., 56:6 (2007), 3193–3221 | DOI | MR | Zbl

[3] Agmon S., Douglis A., Nirenberg L., “Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions, I”, Comm. Pure Appl. Math., 12 (1959), 623–727 ; “II”, Comm. Pure Appl. Math., 17 (1964), 35–92 | DOI | MR | Zbl | DOI | MR | Zbl

[4] Bramanti M., Cerutti M., “$W_p^{1,2}$ solvability for the Cauchy–Dirichlet problem for parabolic equations with VMO coefficients”, Comm. Partial Differential Equations, 18:9–10 (1993), 1735–1763 | DOI | MR | Zbl

[5] Chiarenza F., Frasca M., Longo P., “Interior $W^{2,p}$ estimates for nondivergence elliptic equations with discontinuous coefficients”, Ricerche Mat., 40:1 (1991), 149–168 | MR | Zbl

[6] Chiarenza F., Frasca M., Longo P., “$W^{2,p}$-solvability of the Dirichlet problem for nondivergence elliptic equations with VMO coefficients”, Trans. Amer. Math. Soc., 336:2 (1993), 841–853 | DOI | MR | Zbl

[7] Dong H., “Solvability of parabolic equations in divergence form with partially BMO coefficients”, J. Funct. Anal., 258:7 (2010), 2145–2172 | DOI | MR | Zbl

[8] Dong H., Kim D., “Elliptic equations in divergence form with partially BMO coefficients”, Arch. Rational Mech. Anal., 196:1 (2010), 25–70 | DOI | MR | Zbl

[9] Dong H., Krylov N. V., “Second-order elliptic and parabolic equations with $B(\mathbb R^2,VMO)$ coefficients”, Trans. Amer. Math. Soc., 362:12 (2010), 6477–6494 | DOI | MR | Zbl

[10] Di Fazio G., “$L^p$ estimates for divergence form elliptic equations with discontinuous coefficients”, Boll. Un. Mat. Ital. A (7), 10:2 (1996), 409–420 | MR | Zbl

[11] Kim D., “Parabolic equations with measurable coefficients, II”, J. Math. Anal. Appl., 334:1 (2007), 534–548 | DOI | MR | Zbl

[12] Kim D., “Elliptic and parabolic equations with measurable coefficients in $L_p$-spaces with mixed norms”, Methods Appl. Anal., 15:4 (2008), 437–467 | MR

[13] Kim D., “Parabolic equations with partially BMO coefficients and boundary value problems in Sobolev spaces with mixed norms”, Potential Anal., 33:1 (2010), 17–46 | DOI | MR | Zbl

[14] Kim D., Krylov N. V., “Elliptic differential equations with coefficients measurable with respect to one variable and VMO with respect to the others”, SIAM J. Math. Anal., 39:2 (2007), 489–506 | DOI | MR | Zbl

[15] Kim D., Krylov N. V., “Parabolic equations with measurable coefficients”, Potential Anal., 26:4 (2007), 345–361 | DOI | MR | Zbl

[16] Krylov N. V., Nelineinye ellipticheskie i parabolicheskie uravneniya vtorogo poryadka, Nauka, M., 1985 | MR | Zbl

[17] Krylov N. V., “Parabolic and elliptic equations with VMO coefficients”, Comm. Partial Differential Equations, 32:1–3 (2007), 453–475 | DOI | MR | Zbl

[18] Krylov N. V., “Parabolic equations with VMO coefficients in Sobolev spaces with mixed norms”, J. Funct. Anal., 250:2 (2007), 521–558 | DOI | MR | Zbl

[19] Krylov N. V., “Second-order elliptic equations with variably partially VMO coefficients”, J. Funct. Anal., 257:6 (2009), 1695–1712 | DOI | MR | Zbl

[20] Ladyzhenskaya O. A., Solonnikov V. A., Uraltseva N. N., Lineinye i kvazilineinye uravneniya parabolicheskogo tipa, Nauka, M., 1967

[21] Lieberman G., Second order parabolic differential equations, World Sci. Publ. Co., Inc., River Edge, NJ, 1996 | MR | Zbl

[22] Lieberman G., “A mostly elementary proof of Morrey space estimates for elliptic and parabolic equations with VMO coefficients”, J. Funct. Anal., 201:2 (2003), 457–479 | DOI | MR | Zbl

[23] Softova L., Weidemaier P., “Quasilinear parabolic problems in spaces of maximal regularity”, J. Nonlinear Convex Anal., 7 (2006), 529–540 | MR | Zbl

[24] Weidemaier P., “Maximal regularity for parabolic equations with inhomogeneous boundary conditions in Sobolev spaces with mixed $L_p$-norm”, Electron. Res. Announc. Amer. Math. Soc., 8 (2002), 47–51 | DOI | MR | Zbl