Voir la notice de l'article provenant de la source Math-Net.Ru
@article{AA_2011_23_3_a1, author = {N. V. Budarina}, title = {On primitively 2-universal quadratic forms}, journal = {Algebra i analiz}, pages = {31--62}, publisher = {mathdoc}, volume = {23}, number = {3}, year = {2011}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/AA_2011_23_3_a1/} }
N. V. Budarina. On primitively 2-universal quadratic forms. Algebra i analiz, Tome 23 (2011) no. 3, pp. 31-62. http://geodesic.mathdoc.fr/item/AA_2011_23_3_a1/
[1] Bhargava M., “On the Conway–Schneeberger fifteen theorem”, Quadratic Forms and their Applications (Dublin, 1999), Contemp. Math., 272, eds. E. Bayer-Fluckiger, D. Lewis, A. Ranicki, Amer. Math. Soc., Providence, RI, 2000, 27–37 | MR | Zbl
[2] Oh B.-K., “Universal $\mathbb Z$-lattices of minimal rank”, Proc. Amer. Math. Soc., 128:3 (2000), 683–689 | DOI | MR | Zbl
[3] Kim B. M., Kim M.-H., Oh B.-K., “2-universal positive definite integral quinary quadratic forms”, Integral Quadratic Forms and Lattices (Seoul, 1998), Contemp. Math., 249, Amer. Math. Soc., Providence, RI, 1999, 51–62 | MR | Zbl
[4] Chan W. K., Kim M.-H., Raghavan S., “Ternary universal integral quadratic forms over real quadratic fields”, Japan. J. Math., 22 (1996), 263–273 | MR | Zbl
[5] Earnest A., Khosravani A., “Universal positive quaternary quadratic lattices over totally real number fields”, Mathematika, 44:2 (1997), 342–347 | DOI | MR | Zbl
[6] Kim B. M., “Finiteness of real quadratic fields which admit positive integral diagonal septanary universal forms”, Manuscripta Math., 99:2 (1999), 181–184 | DOI | MR | Zbl
[7] Kim B. M., “Universal octonary diagonal forms over some real quadratic fields”, Comment. Math. Helv., 75:3 (2000), 410–414 | DOI | MR | Zbl
[8] Maass H., “Über die Darstellung total positiver Zahlen des Körpers $R(\sqrt5)$ als Summe von drei Quadraten”, Abh. Math. Sem. Hansischen Univ., 14 (1941), 185–191 | DOI | MR | Zbl
[9] Oh B.-K., “The representations of quadratic forms by almost universal forms of higher rank”, Math. Z., 244 (2003), 399–413 | MR | Zbl
[10] Kloosterman H. D., “On the representation of numbers in the form $ax^2+by^2+cz^2+dt^2$”, Acta Math., 49 (1926), 407–464 | DOI | MR
[11] Pall G., “The completion of a problem of Kloosterman”, Amer. J. Math., 68 (1946), 47–58 | DOI | MR | Zbl
[12] Pall G., Ross A., “An extension of a problem of Kloosterman”, Amer. J. Math., 68 (1946), 59–65 | DOI | MR | Zbl
[13] Bochnak J., Oh B.-K., “Almost-universal quadratic forms: an effective solution of a problem of Ramanujan”, Duke Math. J., 147:1 (2009), 131–156 | DOI | MR | Zbl
[14] Bhargava M., Finiteness theorems for quadratic forms, Preprint
[15] Kim B. M., Kim M.-H., Oh B.-K., “A finiteness theorem for representability of quadratic forms by forms”, J. Reine Angew. Math., 581 (2005), 23–30 | DOI | MR | Zbl
[16] Oh B.-K., “Positive definite $n$-regular quadratic forms”, Invent. Math., 170 (2007), 421–453 | DOI | MR | Zbl
[17] Earnest A. G., “The representation of binary quadratic forms by positive definite quaternary quadratic forms”, Trans. Amer. Math. Soc., 345:2 (1994), 853–863 | DOI | MR | Zbl
[18] Budarina N., “On primitively universal quadratic forms”, Lith. Math. J., 50:2 (2010), 140–163 | DOI | MR | Zbl
[19] Zhuravlev V. G., “Predstavlenie formy rodom kvadratichnykh form”, Algebra i analiz, 8:1 (1996), 21–112 | MR | Zbl
[20] Zhuravlev V. G., “Orbity predstavlenii chisel lokalnymi kvadratichnymi formami”, Tr. Mat. in-ta RAN, 218, 1997, 151–164 | MR | Zbl
[21] Zhuravlev V. G., “Vlozhenie $p$-elementarnykh reshetok”, Izv. RAN. Ser. mat., 63:1 (1999), 77–106 | MR | Zbl
[22] Zhuravlev V. G., “Primitivnye vlozheniya v lokalnye reshetki prostogo opredelitelya”, Algebra i analiz, 11:1 (1999), 87–117 | MR | Zbl
[23] Konvei Dzh., Sloen N., Upakovki sharov, reshetki i gruppy, Mir, M., 1990
[24] Kassels Dzh., Ratsionalnye kvadratichnye formy, Mir, M., 1982 | MR
[25] Zhuravlev V. G., “Deformatsii kvadratichnykh diofantovykh sistem”, Izv. RAN. Ser. mat., 65:6 (2001), 15–56 | MR | Zbl