Discrete spectrum of cranked, branchy, and periodic waveguides
Algebra i analiz, Tome 23 (2011) no. 2, pp. 206-247.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{AA_2011_23_2_a7,
     author = {S. A. Nazarov},
     title = {Discrete spectrum of cranked, branchy, and periodic waveguides},
     journal = {Algebra i analiz},
     pages = {206--247},
     publisher = {mathdoc},
     volume = {23},
     number = {2},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AA_2011_23_2_a7/}
}
TY  - JOUR
AU  - S. A. Nazarov
TI  - Discrete spectrum of cranked, branchy, and periodic waveguides
JO  - Algebra i analiz
PY  - 2011
SP  - 206
EP  - 247
VL  - 23
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AA_2011_23_2_a7/
LA  - ru
ID  - AA_2011_23_2_a7
ER  - 
%0 Journal Article
%A S. A. Nazarov
%T Discrete spectrum of cranked, branchy, and periodic waveguides
%J Algebra i analiz
%D 2011
%P 206-247
%V 23
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AA_2011_23_2_a7/
%G ru
%F AA_2011_23_2_a7
S. A. Nazarov. Discrete spectrum of cranked, branchy, and periodic waveguides. Algebra i analiz, Tome 23 (2011) no. 2, pp. 206-247. http://geodesic.mathdoc.fr/item/AA_2011_23_2_a7/

[1] Duclos P., Exner P., “Curvature-induced bound states in quantum waveguides in two and three dimensions”, Rev. Math. Phys., 7:1 (1995), 73–102 | DOI | MR | Zbl

[2] Kamotskii I. V., Nazarov S. A., “Uprugie volny, lokalizovannye okolo periodicheskikh semeistv defektov”, Dokl. RAN, 368:6 (1999), 771–773 | MR | Zbl

[3] Kamotskii I. V., Nazarov S. A., “Eksponentsialno zatukhayuschie resheniya zadachi o difraktsii na zhestkoi periodicheskoi granitse”, Mat. zametki, 73:1 (2003), 138–140 | MR | Zbl

[4] Jones D. S., “The eigenvalues of $\nabla^2u+\lambda u=0$ when the boundary conditions are given on semi-infinite domains”, Proc. Cambridge Philos. Soc., 49 (1953), 668–684 | DOI | MR | Zbl

[5] Ursell F., “Mathematical aspects of trapping modes in the theory of surface waves”, J. Fluid Mech., 183 (1987), 421–437 | DOI | MR | Zbl

[6] Bonnet-Bendhia A.-S., Starling F., “Guided waves by electromagnetic gratings and non-uniqueness examples for the diffraction problem”, Math. Methods Appl. Sci., 17 (1994), 305–338 | DOI | MR | Zbl

[7] Evans D. V., Levitin M., Vassiliev D., “Existence theorems for trapped modes”, J. Fluid Mech., 261 (1994), 21–31 | DOI | MR | Zbl

[8] Sukhinin S. V., “Volnovodnoe, anomalnoe i shepchuschee svoistva periodicheskoi tsepochki prepyatstvii”, Sib. zh. industr. mat., 1:2 (1998), 175–198 | MR | Zbl

[9] Roitberg I., Vassiliev D., Weidl T., “Edge resonance in an elastic semi-strip”, Quart. J. Mech. Appl. Math., 51:1 (1998), 1–13 | DOI | MR | Zbl

[10] Bonnet-Ben Dhia A.-S., Duterte J., Joly P., “Mathematical analysis of elastic surface waves in topographic waveguides”, Math. Models Methods Appl. Sci., 9:5 (1999), 755–798 | DOI | MR | Zbl

[11] Kamotskii I. V., Nazarov S. A., “Rasshirennaya matritsa rasseyaniya i eksponentsialno zatukhayuschie resheniya ellipticheskoi zadachi v tsilindricheskoi oblasti”, Zap. nauch. semin. POMI, 264, 2000, 66–82 | MR | Zbl

[12] Nazarov S. A., “Kriterii suschestvovaniya zatukhayuschikh reshenii v zadache o rezonatore s tsilindricheskim volnovodom”, Funkts. anal. i ego pril., 40:2 (2006), 20–32 | MR | Zbl

[13] Nazarov S. A., “Lovushechnye mody dlya tsilindricheskogo uprugogo volnovoda s dempfiruyuschei prokladkoi”, Zh. vychisl. mat. i mat. fiz., 48:5 (2008), 863–881 | MR | Zbl

[14] Kamotskii I. V., “O poverkhnostnoi volne, beguschei vdol rebra uprugogo klina”, Algebra i analiz, 20:1 (2008), 86–92 | MR

[15] Nazarov S. A., “Prostoi sposob obnaruzheniya lovushechnykh mod v zadachakh lineinoi teorii poverkhnostnykh voln”, Dokl. RAN, 429:6 (2009), 746–749 | MR | Zbl

[16] Kamotskii I. V., Kiselev A. P., “Energeticheskii podkhod k dokazatelstvu suschestvovaniya voln Releya v anizotropnom uprugom poluprostranstve”, Prikl. mat. i mekh., 73:4 (2009), 645–654 | MR

[17] Linton C. M., McIver P., “Embedded trapped modes in water waves and acoustics”, Wave Motion, 45 (2007), 16–29 | DOI | MR

[18] Ladyzhenskaya O. A., Kraevye zadachi matematicheskoi fiziki, Nauka, M., 1973 | MR

[19] Birman M. Sh., Solomyak M. Z., Spektralnaya teoriya samosopryazhennykh operatorov v gilbertovom prostranstve, LGU, L., 1980 | MR

[20] Kamotskii I. V., Nazarov S. A., “O sobstvennykh funktsiyakh, lokalizovannykh okolo kromki tonkoi oblasti”, Probl. mat. anal., 19, Nauch. kn., Novosibirsk, 1999, 105–148

[21] Nazarov S. A., “Properties of spectra of boundary value problems in cylindrical and quasicylindrical domain”, Sobolev Spaces in Mathematics, v. II, Int. Math. Ser. (N.Y.), 9, ed. V. Maz'ya, Springer, New York, 2009, 261–309 | MR | Zbl

[22] Shult R. L., Ravenhall D. G., Wyld H. D., “Quantum bound states in a classically unbounded system of crossed wires”, Phys. Rev. B, 39:8 (1989), 5476–5479 | DOI

[23] Avishai Y., Bessis D., Giraud B. G., Mantica G., “Quantum bound states in open geometries”, Phys. Rev. B, 44:15 (1991), 8028–8034 | DOI

[24] Polia G., Sege G., Izoperimetricheskie neravenstva v matematicheskoi fizike, Fizmatgiz, M., 1962

[25] Gelfand I. M., “Razlozhenie po sobstvennym funktsiyam uravneniya s periodicheskimi koeffitsientami”, Dokl. AN SSSR, 73:6 (1950), 1117–1120 | MR

[26] Nazarov S. A., “Ellipticheskie kraevye zadachi s periodicheskimi koeffitsientami v tsilindre”, Izv. AN SSSR. Ser. mat., 45:1 (1981), 101–112 | MR | Zbl

[27] Kuchment P. A., “Teoriya Floke dlya differentsialnykh uravnenii v chastnykh proizvodnykh”, Uspekhi mat. nauk, 37:4 (1982), 3–52 | MR | Zbl

[28] Nazarov S. A., Plamenevskii B. A., Ellipticheskie zadachi v oblastyakh s kusochno gladkoi granitsei, Nauka, M., 1991

[29] Kuchment P., Floquet theory for partial differential equations, Oper. Theory Adv. Appl., 60, Birkhäuser, Basel, 1993 | MR | Zbl

[30] Kato T., Teoriya vozmuschenii lineinykh operatorov, Mir, M., 1972 | MR | Zbl

[31] Kuchment P., “The mathematics of photonic crystals”, Mathematical Modeling in Optical Science, Frontiers Appl. Math., 22, SIAM, Philadelphia, 2001, 207–272 | MR