Singular points of the sum of exponential monomials series on the boundary of convergence domain
Algebra i analiz, Tome 23 (2011) no. 2, pp. 162-205.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{AA_2011_23_2_a6,
     author = {O. A. Krivosheyeva},
     title = {Singular points of the sum of exponential monomials series on the boundary of convergence domain},
     journal = {Algebra i analiz},
     pages = {162--205},
     publisher = {mathdoc},
     volume = {23},
     number = {2},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AA_2011_23_2_a6/}
}
TY  - JOUR
AU  - O. A. Krivosheyeva
TI  - Singular points of the sum of exponential monomials series on the boundary of convergence domain
JO  - Algebra i analiz
PY  - 2011
SP  - 162
EP  - 205
VL  - 23
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AA_2011_23_2_a6/
LA  - ru
ID  - AA_2011_23_2_a6
ER  - 
%0 Journal Article
%A O. A. Krivosheyeva
%T Singular points of the sum of exponential monomials series on the boundary of convergence domain
%J Algebra i analiz
%D 2011
%P 162-205
%V 23
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AA_2011_23_2_a6/
%G ru
%F AA_2011_23_2_a6
O. A. Krivosheyeva. Singular points of the sum of exponential monomials series on the boundary of convergence domain. Algebra i analiz, Tome 23 (2011) no. 2, pp. 162-205. http://geodesic.mathdoc.fr/item/AA_2011_23_2_a6/

[1] Bratischev A. V., Bazisy Kete, tselye funktsii i ikh prilozheniya, Diss. na soiskanie uch. st. dokt. fiz.-mat. nauk, Rostov-na-Donu, 1995

[2] Krivosheeva O. A., “Ryady eksponentsialnykh monomov v kompleksnykh oblastyakh”, Vestn. Ufim. gos. avia. tekhn. un-ta, 9:3(21) (2007), 96–103

[3] Hadamard J., “Essai sur l'étude des fonctions données par leur développement de Taylor”, J. Math. Pures Appl. (4), 8 (1892), 101–186

[4] Fabry E., “Sur les points singuliers d'une fonction donnée par son développement en série et l'impossibilité du prolongement analytique dans des cas très généraux”, Ann. Sci. Ecole Norm. Sup. (3), 13 (1896), 367–399 | MR | Zbl

[5] Polya G., “Über die Existenz unendlich vieler singulärer Punkte auf der Konvergenzgeraden gewisser Dirichletscher Reihen”, S.-B. Preuss. Akad. Phys.-Math. Kl., 1923 (1923), 45–50 | Zbl

[6] Polya G., “Eine Verallgemeinerung des Fabryschen Lückensatzes”, Nachr. Ges. Wiss. Göttingen, Math.-Phys. Kl., 2 (1927), 187–195 | Zbl

[7] Leontev A. F., Ryady eksponent, Nauka, M., 1976 | MR

[8] Bernstein V., Lecons sur les progrès récents de la théorie des séries de Dirichlet, Gauthier-Villars, Paris, 1933 | Zbl

[9] Leontev A. F., Tselye funktsii. Ryady eksponent, Nauka, M., 1983 | MR

[10] Ostrowski A., “Über die analytische Fortsetzung von Taylorschen und Dirichletschen Reihen”, Math. Ann., 129 (1955), 1–43 | DOI | MR | Zbl

[11] Lunts G. L., “O ryadakh Dirikhle s kompleksnymi pokazatelyami”, Mat. sb., 67(109):1 (1965), 89–134 | MR | Zbl

[12] Lunts G. L., “Ryad Dirikhle s neizmerimoi posledovatelnostyu kompleksnykh pokazatelei”, Mat. sb., 68(110):1 (1965), 58–62 | MR | Zbl

[13] Krivosheev A. S., “Kriterii fundamentalnogo printsipa dlya invariantnykh podprostranstv”, Dokl. RAN, 389:4 (2003), 457–460 | MR | Zbl

[14] Krivosheev A. S., “Fundamentalnyi printsip dlya invariantnykh podprostranstv v vypuklykh oblastyakh”, Izv. RAN. Ser. mat., 68:2 (2004), 71–136 | MR | Zbl

[15] Levin B. Ya., Raspredelenie kornei tselykh funktsii, Gostekhizdat, M., 1956

[16] Leikhtveis K., Vypuklye mnozhestva, Nauka, M., 1985 | MR

[17] Lelon P., Gruman L., Tselye funktsii mnogikh kompleksnykh peremennykh, Mir, M., 1989 | MR | Zbl

[18] Napalkov V. V., Uravneniya svertki v mnogomernykh prostranstvakh, Nauka, M., 1982 | MR | Zbl

[19] Krasichkov-Ternovskii I. F., “Invariantnye podprostranstva analiticheskikh funktsii. III. O rasprostranenii spektralnogo sinteza”, Mat. sb., 88(130):3 (1972), 331–352 | MR | Zbl

[20] Mandelbroit C., Primykayuschie ryady. Regulyarizatsiya posledovatelnostei. Primeneniya, IL, M., 1955

[21] Koosis P., The logarithmic integral. II, Cambridge Stud. in Adv. Math., 21, Cambridge Univ. Press, Cambridge, 1992 | MR | Zbl