Asymptotic sharpness of a~Bernstein-type inequality for rational functions in~$H^2$
Algebra i analiz, Tome 23 (2011) no. 2, pp. 147-161.

Voir la notice de l'article provenant de la source Math-Net.Ru

A Bernstein-type inequality for the standard Hardy space $H^2$ in the unit disk $\mathbb D=\{z\in\mathbb C\colon|z|1\}$ is considered for rational functions in $\mathbb D$ having at most $n$ poles all outside of $\frac1r\mathbb D$, $0$. The asymptotic sharpness is shown as $n\to\infty$ and $r\to1$.
Keywords: Bernstein inequality, finite Blaschke product, Hardy space.
@article{AA_2011_23_2_a5,
     author = {R. Zarouf},
     title = {Asymptotic sharpness of {a~Bernstein-type} inequality for rational functions in~$H^2$},
     journal = {Algebra i analiz},
     pages = {147--161},
     publisher = {mathdoc},
     volume = {23},
     number = {2},
     year = {2011},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/AA_2011_23_2_a5/}
}
TY  - JOUR
AU  - R. Zarouf
TI  - Asymptotic sharpness of a~Bernstein-type inequality for rational functions in~$H^2$
JO  - Algebra i analiz
PY  - 2011
SP  - 147
EP  - 161
VL  - 23
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AA_2011_23_2_a5/
LA  - en
ID  - AA_2011_23_2_a5
ER  - 
%0 Journal Article
%A R. Zarouf
%T Asymptotic sharpness of a~Bernstein-type inequality for rational functions in~$H^2$
%J Algebra i analiz
%D 2011
%P 147-161
%V 23
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AA_2011_23_2_a5/
%G en
%F AA_2011_23_2_a5
R. Zarouf. Asymptotic sharpness of a~Bernstein-type inequality for rational functions in~$H^2$. Algebra i analiz, Tome 23 (2011) no. 2, pp. 147-161. http://geodesic.mathdoc.fr/item/AA_2011_23_2_a5/

[1] Baranov A., Inégalités de Bernstein dans les espaces modéles et applications, Thèse, l'Université Bordeaux 1, 2005

[2] Baranov A., “Bernstein-type inequalities for shift-coinvariant subspaces and their applications to Carleson embeddings”, J. Funct. Anal., 223:1 (2005), 116–146 | DOI | MR | Zbl

[3] Baranov A. D., “Vlozheniya modelnykh podprostranstv klassa Khardi: kompaktnost i idealy Shattena–fon Neimana”, Izv. RAN. Ser. mat., 73:6 (2009), 3–28 | MR | Zbl

[4] Borwein P., Erdélyi T., Polynomials and polynomial inequalities, Grad. Texts in Math., 161, Springer-Verlag, New York, 1995 | MR

[5] DeVore R. A., Lorentz G. G., Constructive approximation, Grundlehren Math. Wiss., 303, Springer-Verlag, Berlin, 1993 | MR | Zbl

[6] Dyakonov K., “Differentiation in star-invariant subspaces. I. Boundedness and compactness”, J. Funct. Anal., 192 (2002), 364–386 | DOI | MR | Zbl

[7] Dyakonov K., “Smooth functions in the range of a Hankel operator”, Indiana Univ. Math. J., 43 (1994), 805–838 | DOI | MR | Zbl

[8] Dyn'kin E. M., “Inequalities for rational functions”, J. Approx. Theory, 91:3 (1997), 349–367 | DOI | MR

[9] LeVeque R. J., Trefethen L. N., “On the resolvent condition in the Kreiss matrix theorem”, BIT, 24 (1984), 584–591 | DOI | MR | Zbl

[10] Levin M. B., “Otsenka proizvodoi ot meromorfnoi funktsii na granitse oblasti”, Teoriya funktsii, funkts. anal. i ikh pril., 24, Vischa shk., Kharkov, 1975, 68–85

[11] Nikolskii N. K., Lektsii ob operatore sdviga, Nauka, M., 1980 | MR

[12] Nikolski N., Operators, functions, and systems: an easy reading, v. 1, Math. Surveys Monogr., 92, Amer. Math. Soc., Providence, RI, 2002 | MR | Zbl

[13] Pekarskii A. A., “Neravenstva tipa Bernshteina dlya proizvodnykh ratsionalnykh funktsii i obratnye teoremy ratsionalnoi approksimatsii”, Mat. sb., 124(166):4 (1984), 571–588 | MR | Zbl

[14] Pekarskii A. A., “Otsenka vysshikh proizvodnykh ratsionalnykh funktsii i ikh prilozheniya”, Izv. AN BSSR. Ser. fiz.-mat. nauk, 1980, no. 5, 21–28 | MR

[15] Pekarskii A. A., Shtal G., “Neravenstva tipa Bernshteina dlya proizvodnykh ratsionalnykh funktsii v prostranstvakh $L_p$ pri $p1$”, Mat. sb., 186:1 (1995), 119–130 | MR | Zbl

[16] Rahman Q. I., Schmeisser G., Analytic theory of polynomials, London Math. Soc. Monogr. New Ser., 26, Clarendon Press, Oxford, 2002 | MR

[17] Spijker M. N., “On a conjecture by LeVeque and Trefethen related to the Kreiss matrix theorem”, BIT, 31 (1991), 551–555 | DOI | MR | Zbl

[18] Zarouf R., Effective $H^{\infty}$ interpolation constrained by Hardy and Bergman norms, (submitted)

[19] Zarouf R., Effective $H^{\infty}$ interpolation constrained by Hardy and Bergman weighted norms, (submitted)

[20] Zarouf R., “Une amélioration d'un résultat de E. B. Davies et B. Simon”, C. R. Math. Acad. Sci. Paris, 347:15–16 (2009), 939–942 | MR | Zbl