Voir la notice de l'article provenant de la source Math-Net.Ru
@article{AA_2011_23_2_a5, author = {R. Zarouf}, title = {Asymptotic sharpness of {a~Bernstein-type} inequality for rational functions in~$H^2$}, journal = {Algebra i analiz}, pages = {147--161}, publisher = {mathdoc}, volume = {23}, number = {2}, year = {2011}, language = {en}, url = {http://geodesic.mathdoc.fr/item/AA_2011_23_2_a5/} }
R. Zarouf. Asymptotic sharpness of a~Bernstein-type inequality for rational functions in~$H^2$. Algebra i analiz, Tome 23 (2011) no. 2, pp. 147-161. http://geodesic.mathdoc.fr/item/AA_2011_23_2_a5/
[1] Baranov A., Inégalités de Bernstein dans les espaces modéles et applications, Thèse, l'Université Bordeaux 1, 2005
[2] Baranov A., “Bernstein-type inequalities for shift-coinvariant subspaces and their applications to Carleson embeddings”, J. Funct. Anal., 223:1 (2005), 116–146 | DOI | MR | Zbl
[3] Baranov A. D., “Vlozheniya modelnykh podprostranstv klassa Khardi: kompaktnost i idealy Shattena–fon Neimana”, Izv. RAN. Ser. mat., 73:6 (2009), 3–28 | MR | Zbl
[4] Borwein P., Erdélyi T., Polynomials and polynomial inequalities, Grad. Texts in Math., 161, Springer-Verlag, New York, 1995 | MR
[5] DeVore R. A., Lorentz G. G., Constructive approximation, Grundlehren Math. Wiss., 303, Springer-Verlag, Berlin, 1993 | MR | Zbl
[6] Dyakonov K., “Differentiation in star-invariant subspaces. I. Boundedness and compactness”, J. Funct. Anal., 192 (2002), 364–386 | DOI | MR | Zbl
[7] Dyakonov K., “Smooth functions in the range of a Hankel operator”, Indiana Univ. Math. J., 43 (1994), 805–838 | DOI | MR | Zbl
[8] Dyn'kin E. M., “Inequalities for rational functions”, J. Approx. Theory, 91:3 (1997), 349–367 | DOI | MR
[9] LeVeque R. J., Trefethen L. N., “On the resolvent condition in the Kreiss matrix theorem”, BIT, 24 (1984), 584–591 | DOI | MR | Zbl
[10] Levin M. B., “Otsenka proizvodoi ot meromorfnoi funktsii na granitse oblasti”, Teoriya funktsii, funkts. anal. i ikh pril., 24, Vischa shk., Kharkov, 1975, 68–85
[11] Nikolskii N. K., Lektsii ob operatore sdviga, Nauka, M., 1980 | MR
[12] Nikolski N., Operators, functions, and systems: an easy reading, v. 1, Math. Surveys Monogr., 92, Amer. Math. Soc., Providence, RI, 2002 | MR | Zbl
[13] Pekarskii A. A., “Neravenstva tipa Bernshteina dlya proizvodnykh ratsionalnykh funktsii i obratnye teoremy ratsionalnoi approksimatsii”, Mat. sb., 124(166):4 (1984), 571–588 | MR | Zbl
[14] Pekarskii A. A., “Otsenka vysshikh proizvodnykh ratsionalnykh funktsii i ikh prilozheniya”, Izv. AN BSSR. Ser. fiz.-mat. nauk, 1980, no. 5, 21–28 | MR
[15] Pekarskii A. A., Shtal G., “Neravenstva tipa Bernshteina dlya proizvodnykh ratsionalnykh funktsii v prostranstvakh $L_p$ pri $p1$”, Mat. sb., 186:1 (1995), 119–130 | MR | Zbl
[16] Rahman Q. I., Schmeisser G., Analytic theory of polynomials, London Math. Soc. Monogr. New Ser., 26, Clarendon Press, Oxford, 2002 | MR
[17] Spijker M. N., “On a conjecture by LeVeque and Trefethen related to the Kreiss matrix theorem”, BIT, 31 (1991), 551–555 | DOI | MR | Zbl
[18] Zarouf R., Effective $H^{\infty}$ interpolation constrained by Hardy and Bergman norms, (submitted)
[19] Zarouf R., Effective $H^{\infty}$ interpolation constrained by Hardy and Bergman weighted norms, (submitted)
[20] Zarouf R., “Une amélioration d'un résultat de E. B. Davies et B. Simon”, C. R. Math. Acad. Sci. Paris, 347:15–16 (2009), 939–942 | MR | Zbl