Voir la notice de l'article provenant de la source Math-Net.Ru
@article{AA_2011_23_2_a4, author = {E. S. Vasilevskaya and T. A. Suslina}, title = {Threshold approximations of a~factorized selfadjoint operator family with the first and the second correctors taken into account}, journal = {Algebra i analiz}, pages = {102--146}, publisher = {mathdoc}, volume = {23}, number = {2}, year = {2011}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/AA_2011_23_2_a4/} }
TY - JOUR AU - E. S. Vasilevskaya AU - T. A. Suslina TI - Threshold approximations of a~factorized selfadjoint operator family with the first and the second correctors taken into account JO - Algebra i analiz PY - 2011 SP - 102 EP - 146 VL - 23 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/AA_2011_23_2_a4/ LA - ru ID - AA_2011_23_2_a4 ER -
%0 Journal Article %A E. S. Vasilevskaya %A T. A. Suslina %T Threshold approximations of a~factorized selfadjoint operator family with the first and the second correctors taken into account %J Algebra i analiz %D 2011 %P 102-146 %V 23 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/AA_2011_23_2_a4/ %G ru %F AA_2011_23_2_a4
E. S. Vasilevskaya; T. A. Suslina. Threshold approximations of a~factorized selfadjoint operator family with the first and the second correctors taken into account. Algebra i analiz, Tome 23 (2011) no. 2, pp. 102-146. http://geodesic.mathdoc.fr/item/AA_2011_23_2_a4/
[1] Birman M. Sh., Suslina T. A., “Periodicheskie differentsialnye operatory vtorogo poryadka. Porogovye svoistva i usredneniya”, Algebra i analiz, 15:5 (2003), 1–108 | MR | Zbl
[2] Birman M. Sh., Suslina T. A.,, “Porogovye approksimatsii rezolventy faktorizovannogo samosopryazhennogo semeistva s uchetom korrektora”, Algebra i analiz, 17:5 (2005), 69–90 | MR | Zbl
[3] Birman M. Sh., Suslina T. A., “Usrednenie periodicheskikh ellipticheskikh differentsialnykh operatorov s uchetom korrektora”, Algebra i analiz, 17:6 (2005), 1–104 | MR | Zbl
[4] Birman M. Sh., Suslina T. A., “Usrednenie periodicheskikh differentsialnykh operatorov s uchetom korrektora. Priblizhenie reshenii v klasse Soboleva $H^1(\mathbb R^d)$”, Algebra i analiz, 18:6 (2006), 1–130 | MR | Zbl
[5] Vasilevskaya E. S., “Usrednenie parabolicheskoi zadachi Koshi s periodicheskimi koeffitsientami pri uchete korrektora”, Algebra i analiz, 21:1 (2009), 3–60 | MR | Zbl
[6] Kato T., Teoriya vozmuschenii lineinykh operatorov, Mir, M., 1972 | MR | Zbl
[7] Suslina T. A., “Ob usrednenii periodicheskikh parabolicheskikh sistem”, Funkts. anal. i ego pril., 38:4 (2004), 86–90 | MR | Zbl
[8] Suslina T. A., “Homogenization of periodic parabolic Cauchy problem”, Nonlinear Equations and Spectral Theory, Amer. Math. Soc. Transl. Ser. 2, 220, Amer. Math. Soc., Providence, RI, 2007, 201–233 | MR | Zbl
[9] Suslina T. A., “Homogenization of a periodic parabolic Cauchy problem in the Sobolev space $H^1(\mathbb R^d)$”, Math. Model. Nat. Phenom., 5:4 (2010), 390–447 | DOI | MR | Zbl
[10] Suslina T. A., “Usrednenie parabolicheskoi zadachi Koshi v klasse Soboleva $H^1(\mathbb R^d)$”, Funkts. anal. i ego pril., 44:4 (2010), 91–96 | MR