Threshold approximations of a~factorized selfadjoint operator family with the first and the second correctors taken into account
Algebra i analiz, Tome 23 (2011) no. 2, pp. 102-146.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{AA_2011_23_2_a4,
     author = {E. S. Vasilevskaya and T. A. Suslina},
     title = {Threshold approximations of a~factorized selfadjoint operator family with the first and the second correctors taken into account},
     journal = {Algebra i analiz},
     pages = {102--146},
     publisher = {mathdoc},
     volume = {23},
     number = {2},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AA_2011_23_2_a4/}
}
TY  - JOUR
AU  - E. S. Vasilevskaya
AU  - T. A. Suslina
TI  - Threshold approximations of a~factorized selfadjoint operator family with the first and the second correctors taken into account
JO  - Algebra i analiz
PY  - 2011
SP  - 102
EP  - 146
VL  - 23
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AA_2011_23_2_a4/
LA  - ru
ID  - AA_2011_23_2_a4
ER  - 
%0 Journal Article
%A E. S. Vasilevskaya
%A T. A. Suslina
%T Threshold approximations of a~factorized selfadjoint operator family with the first and the second correctors taken into account
%J Algebra i analiz
%D 2011
%P 102-146
%V 23
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AA_2011_23_2_a4/
%G ru
%F AA_2011_23_2_a4
E. S. Vasilevskaya; T. A. Suslina. Threshold approximations of a~factorized selfadjoint operator family with the first and the second correctors taken into account. Algebra i analiz, Tome 23 (2011) no. 2, pp. 102-146. http://geodesic.mathdoc.fr/item/AA_2011_23_2_a4/

[1] Birman M. Sh., Suslina T. A., “Periodicheskie differentsialnye operatory vtorogo poryadka. Porogovye svoistva i usredneniya”, Algebra i analiz, 15:5 (2003), 1–108 | MR | Zbl

[2] Birman M. Sh., Suslina T. A.,, “Porogovye approksimatsii rezolventy faktorizovannogo samosopryazhennogo semeistva s uchetom korrektora”, Algebra i analiz, 17:5 (2005), 69–90 | MR | Zbl

[3] Birman M. Sh., Suslina T. A., “Usrednenie periodicheskikh ellipticheskikh differentsialnykh operatorov s uchetom korrektora”, Algebra i analiz, 17:6 (2005), 1–104 | MR | Zbl

[4] Birman M. Sh., Suslina T. A., “Usrednenie periodicheskikh differentsialnykh operatorov s uchetom korrektora. Priblizhenie reshenii v klasse Soboleva $H^1(\mathbb R^d)$”, Algebra i analiz, 18:6 (2006), 1–130 | MR | Zbl

[5] Vasilevskaya E. S., “Usrednenie parabolicheskoi zadachi Koshi s periodicheskimi koeffitsientami pri uchete korrektora”, Algebra i analiz, 21:1 (2009), 3–60 | MR | Zbl

[6] Kato T., Teoriya vozmuschenii lineinykh operatorov, Mir, M., 1972 | MR | Zbl

[7] Suslina T. A., “Ob usrednenii periodicheskikh parabolicheskikh sistem”, Funkts. anal. i ego pril., 38:4 (2004), 86–90 | MR | Zbl

[8] Suslina T. A., “Homogenization of periodic parabolic Cauchy problem”, Nonlinear Equations and Spectral Theory, Amer. Math. Soc. Transl. Ser. 2, 220, Amer. Math. Soc., Providence, RI, 2007, 201–233 | MR | Zbl

[9] Suslina T. A., “Homogenization of a periodic parabolic Cauchy problem in the Sobolev space $H^1(\mathbb R^d)$”, Math. Model. Nat. Phenom., 5:4 (2010), 390–447 | DOI | MR | Zbl

[10] Suslina T. A., “Usrednenie parabolicheskoi zadachi Koshi v klasse Soboleva $H^1(\mathbb R^d)$”, Funkts. anal. i ego pril., 44:4 (2010), 91–96 | MR