Voir la notice de l'article provenant de la source Math-Net.Ru
@article{AA_2011_23_2_a3, author = {S. V. Astashkin}, title = {On finite representability of $l_p$-spaces in rearrangement invariant spaces}, journal = {Algebra i analiz}, pages = {77--101}, publisher = {mathdoc}, volume = {23}, number = {2}, year = {2011}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/AA_2011_23_2_a3/} }
S. V. Astashkin. On finite representability of $l_p$-spaces in rearrangement invariant spaces. Algebra i analiz, Tome 23 (2011) no. 2, pp. 77-101. http://geodesic.mathdoc.fr/item/AA_2011_23_2_a3/
[1] Tsirelson B. S., “Ne v lyuboe banakhovo prostranstvo mozhno vlozhit $l_p$ ili $c_0$”, Funkts. anal. i ego pril., 8:2 (1974), 57–60 | MR | Zbl
[2] Dvoretzky A., “Some results on convex bodies and Banach spaces”, Proc. Internat. Sympos. Linear Spaces (Jerusalem, 1960), Jerusalem Acad. Press, Jerusalem, 1961, 123–160 | MR | Zbl
[3] Milman V. D., Schechtman G., Asymptotic theory of finite dimensional normed spaces, Lecture Notes in Math., 1200, Springer-Verlag, Berlin, 1986 | MR | Zbl
[4] Krivine J. L., “Sous-espaces de dimension finie des espaces de Banach réticulés”, Ann. of Math. (2), 104 (1976), 1–29 | DOI | MR | Zbl
[5] Albiac F., Kalton N. J., Topics in Banach space theory, Grad. Texts in Math., 233, Springer, New York, 2006 | MR
[6] Diestel J., Jarchow H., Tonge A., Absolutely summing operators, Cambridge Stud. Adv. Math., 43, Cambridge Univ. Press, Cambridge, 1995 | MR | Zbl
[7] Lindenstrauss J., Tzafriri L., Classical Banach spaces, v. II, Ergeb. Math. Grenzgeb., 97, Function spaces, Springer-Verlag, Berlin–New York, 1979 | MR | Zbl
[8] Maurey B., Pisier G., “Séries de variables aléatoires vectorielles indépendantes et propriétés géométriques des espaces de Banach”, Studia Math. (2), 58 (1976), 45–90 | MR | Zbl
[9] Schep A. R., “Krivine's theorem and the indices of a Banach lattice”, Acta Appl. Math., 27 (1992), 111–121 | DOI | MR | Zbl
[10] Rosenthal H. P., “On a theorem of J. L. Krivine concerning block finite representability of $l^p$ in general Banach spaces”, J. Funct. Anal., 28 (1978), 197–225 | DOI | MR | Zbl
[11] Astashkin S. V., “Tensor product in symmetric function spaces”, Function Spaces (Zielona Góra, Poland, 1995), Collect. Math., 48, no. 4–6, 1997, 375–391 | MR | Zbl
[12] Antonevich A. B., Lineinye funktsionalnye uravneniya. Operatornyi podkhod, Belorus. un-t, Minsk, 1988 | MR
[13] Astashkin S. V., Sunehag P., “Real method of interpolation on subcouples of codimension one”, Studia Math., 185:2 (2008), 151–168 | DOI | MR | Zbl
[14] Krein S. G., Petunin Yu. I., Semenov E. M., Interpolyatsiya lineinykh operatorov, Nauka, M., 1978 | MR
[15] Bennett C., Sharpley R., Interpolation of operators, Pure Appl. Math., 129, Acad. Press, Boston, 1988 | MR | Zbl
[16] Astashkin S. V., “Images of operators in rearrangement invariant spaces and interpolation”, Function Spaces (Wroclaw, Poland, 2001), World Sci. Publ., River Edge, NJ, 2003, 49–64 | MR | Zbl
[17] Astashkin S. V., “Interpolyatsiya peresechenii veschestvennym metodom”, Algebra i analiz, 17:2 (2005), 33–69 | MR | Zbl
[18] Kalton N. J., “Calderón couples of rearrangement invariant spaces”, Studia Math., 106:3 (1993), 233–277 | MR | Zbl
[19] Lindenstrauss J., Tzafriri L., Classical Banach spaces, v. I, Ergeb. Math. Grenzgeb., 92, Sequence spaces, Springer-Verlag, Berlin–New York, 1977 | MR | Zbl