Functions of perturbed dissipative operators
Algebra i analiz, Tome 23 (2011) no. 2, pp. 9-51.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{AA_2011_23_2_a1,
     author = {A. B. Aleksandrov and V. V. Peller},
     title = {Functions of perturbed dissipative operators},
     journal = {Algebra i analiz},
     pages = {9--51},
     publisher = {mathdoc},
     volume = {23},
     number = {2},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AA_2011_23_2_a1/}
}
TY  - JOUR
AU  - A. B. Aleksandrov
AU  - V. V. Peller
TI  - Functions of perturbed dissipative operators
JO  - Algebra i analiz
PY  - 2011
SP  - 9
EP  - 51
VL  - 23
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AA_2011_23_2_a1/
LA  - ru
ID  - AA_2011_23_2_a1
ER  - 
%0 Journal Article
%A A. B. Aleksandrov
%A V. V. Peller
%T Functions of perturbed dissipative operators
%J Algebra i analiz
%D 2011
%P 9-51
%V 23
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AA_2011_23_2_a1/
%G ru
%F AA_2011_23_2_a1
A. B. Aleksandrov; V. V. Peller. Functions of perturbed dissipative operators. Algebra i analiz, Tome 23 (2011) no. 2, pp. 9-51. http://geodesic.mathdoc.fr/item/AA_2011_23_2_a1/

[1] Birman M. Sh., Solomyak M. Z., “Dvoinye operatornye integraly Stiltesa”, Spektralnaya teoriya i volnovye protsescy, Probl. mat. fiz., 1, LGU, L., 1966, 33–67 | MR

[2] Birman M. Sh., Solomyak M. Z., “Dvoinye operatornye integraly Stiltesa. II”, Spektralnaya teoriya, problemy difraktsii, Probl. mat. fiz., 2, LGU, L., 1967, 26–60 | MR

[3] Birman M. Sh., Solomyak M. Z., “Dvoinye operatornye integraly Stiltesa. III. Predelnyi perekhod pod znakom integrala”, Teoriya funktsii. Spektralnaya teoriya. Rasprostranenie voln, Probl. mat. fiz., 6, LGU, L., 1973, 27–53 | MR

[4] Malamud M. M., Malamud S. M., “Spektralnaya teoriya operatornykh mer v gilbertovom prostranstve”, Algebra i analiz, 15:3 (2003), 1–77 | MR | Zbl

[5] Naboko S. N., “Otsenki v operatornykh klassakh dlya raznosti funktsii iz klassa pika ot akkretivnykh operatorov”, Funkts. anal. i ego pril., 24:3 (1990), 26–35 | MR | Zbl

[6] Naimark M. A., “Spektralnye funktsii simmetricheskogo operatora”, Izv. AN SSSR. Ser. mat., 4:3 (1940), 277–318 | MR | Zbl

[7] Nikolskaya L. N., Farforovskaya Yu. B., “Operatornaya gëlderovost funktsii Gëldera”, Algebra i analiz, 22:4 (2010), 198–213 | MR

[8] Pavlov B. S., “O mnogomernykh operatornykh integralakh”, Lineinye operatory i operatornye uravneniya, Probl. mat. anal., 2, LGU, L., 1969, 99–122

[9] Peller V. V., “Operatory Gankelya klassa $\mathfrak S_p$ i ikh prilozheniya (ratsionalnaya approksimatsiya, gaussovskie protsessy, problema mazhoratsii operatorov)”, Mat. sb., 113(155):4 (1980), 538–581 | MR | Zbl

[10] Peller V. V., “Operatory Gankelya v teorii vozmuschenii unitarnykh i samosopryazhennykh operatorov”, Funkts. anal. i ego pril., 19:2 (1985), 37–51 | MR | Zbl

[11] Peller V. V., Operatory Gankelya i ikh prilozheniya, NITs “Regulyarnaya i khaoticheskaya dinamika”, In-t kompyuter. issled., M.–Izhevsk, 2005

[12] Sëkefalvi-Nad B., Foyash Ch., Garmonicheskii analiz operatorov v gilbertovom prostranstve, Mir, M., 1970 | MR

[13] Solomyak B. M., “O funktsionalnoi modeli dlya dissipativnykh operatorov. Beskoordinatnyi podkhod”, Zap. nauch. semin. LOMI, 178, 1989, 57–91 | Zbl

[14] Stenkin V. V., “O kratnykh operatornykh integralakh”, Izv. vuzov. Mat., 1977, no. 4, 102–115 | MR | Zbl

[15] Tribel Kh., Teoriya interpolyatsii, funktsionalnye prostranstva, differentsialnye operatory, Mir, M., 1980 | MR

[16] Farforovskaya Yu. B., “O svyazi metriki Kantorovicha–Rubinshteina dlya spektralnykh razlozhenii samosopryazhennykh operatorov s funktsiyami ot operatorov”, Vestn. Leningr. un-ta. Mat., mekh., astronom., 1968, no. 4, 94–97

[17] Aleksandrov A. B., Peller V. V., “Functions of perturbed operators”, C. R. Math. Acad. Sci. Paris, 347 (2009), 483–488 | MR | Zbl

[18] Aleksandrov A. B., Peller V. V., “Operator Hölder–Zygmund functions”, Adv. Math., 224 (2010), 910–966 | DOI | MR | Zbl

[19] Aleksandrov A. B., Peller V. V., “Functions of operators under perturbations of class $\mathbf S_p$”, J. Funct. Anal., 258 (2010), 3675–3724 | DOI | MR | Zbl

[20] Aleksandrov A. B., Peller V. V., “Functions of perturbed unbounded self-adjoint operators”, Indiana Univ. Math. J., 2010 (to appear)

[21] Azamov N. A., Carey A. L., Dodds P. G., Sukochev F. A., “Operator integrals, spectral shift and spectral flow”, Canad. J. Math., 61 (2009), 241–263 | DOI | MR | Zbl

[22] Birman M. S., Solomyak M. Z., “Tensor product of a finite number of spectral measures is always a spectral measure”, Integral Equations Operator Theory, 24 (1996), 179–187 | DOI | MR | Zbl

[23] Birman M. S., Solomyak M. Z., “Double operator integrals in a Hilbert space”, Integral Equations Operator Theory, 47 (2003), 131–168 | DOI | MR | Zbl

[24] DeVore R. A., Lorentz G. G., Constructive approximation, Grundlehren Math. Wiss., 303, Springer-Verlag, Berlin, 1993 | MR | Zbl

[25] Jushchenko K., Todorov I. G., Turowska L., “Multidimensional operator multipliers”, Trans. Amer. Math. Soc., 361 (2009), 4683–4720 | DOI | MR

[26] Kato T., “Continuity of the map $S\mapsto|S|$ for linear operators”, Proc. Japan Acad., 49 (1973), 157–160 | DOI | MR | Zbl

[27] McIntosh A., “Counterexample to a question on commutators”, Proc. Amer. Math. Soc., 29 (1971), 337–340 | DOI | MR | Zbl

[28] Peetre J., New thoughts on Besov spaces, Duke Univ. Math. Ser., 1, Math. Dep., Duke Univ., Durham, NC, 1976 | MR

[29] Peller V. V., “For which $f$ does $A-B\in\mathbf S_p$ imply that $f(A)-f(B)\in\mathbf S_p$? Operators in Indefinite Metric Spaces, Scattering Theory and other Topics” (Bucharest, 1985), Oper. Theory Adv. Appl., 24, Birkhäuser, Basel, 1987, 289–294 | MR

[30] Peller V. V., “Hankel operators in the perturbation theory of unbounded self-adjoint operators”, Analysis and Partial Differential Equations, Lecture Notes in Pure and Appl. Math., 122, Dekker, New York, 1990, 529–544 | MR

[31] Peller V. V., “Multiple operator integrals and higher operator derivatives”, J. Funct. Anal., 233 (2006), 515–544 | DOI | MR | Zbl

[32] Peller V. V., “Differentiability of functions of contractions”, Amer. Math. Soc. Transl. (2), 226, Amer. Math. Soc., Providence, RI, 2009, 109–131 | MR | Zbl

[33] Pólya G., “Remarks on characteristic functions”, Proc. Berkeley Sympos. on Math. Statist. and Probab., Univ. of Calif. Press, Berkeley–Los Angeles, 1949, 115–123 | MR