Voir la notice de l'article provenant de la source Math-Net.Ru
@article{AA_2011_23_2_a0, author = {L. Aermark and A. Laptev}, title = {Hardy's inequality for a~magnetic {Grushin} operator with {Aharonov--Bohm} type magnetic field}, journal = {Algebra i analiz}, pages = {1--8}, publisher = {mathdoc}, volume = {23}, number = {2}, year = {2011}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/AA_2011_23_2_a0/} }
L. Aermark; A. Laptev. Hardy's inequality for a~magnetic Grushin operator with Aharonov--Bohm type magnetic field. Algebra i analiz, Tome 23 (2011) no. 2, pp. 1-8. http://geodesic.mathdoc.fr/item/AA_2011_23_2_a0/
[1] Birman M. Sh.,, “O spektre singulyarnykh granichnykh zadach”, Mat. sb., 55(97):2 (1961), 125–174 | MR | Zbl
[2] D'Ambrozio L.,, “Nekotorye neravenstva Khardi na gruppe Geizenberga”, Differents. uravneniya, 40:4 (2004), 509–521 | MR
[3] D'Ambrosio L., “Hardy inequalities related to Grushin type operators”, Proc. Amer. Math. Soc., 132:3 (2004), 725–734 | DOI | MR
[4] Davies E. B., “A review of Hardy inequalities”, The Maz'ya Anniversary Collection (Rostock, 1998), v. 2, Oper. Theory Adv. Appl., 110, Birkhäuser-Verlag, Basel, 1999, 55–67 | MR | Zbl
[5] Dou J., Guo Q., Niu P., “Hardy inequalities with remainder terms for the generalized Baouendi–Grushin vector fields”, Math. Inequal. Appl., 13:3 (2010), 555–570 | MR | Zbl
[6] Garofalo N., “Unique continuation for a class of elliptic operators which degenerate on a manifold of arbitrary codimension”, J. Differential Equations, 104:1 (1993), 117–146 | DOI | MR | Zbl
[7] Garofallo N., Lanconelli E., “Frequency functions on Heisenberg group, the uncertainty principle and unique continuation”, Ann. Inst. Fourier (Grenoble), 40:2 (1990), 313–356 | MR
[8] Grushin V. V., “Ob odnom klasse gipoellipticheskikh operatorov”, Mat. sb., 83(125):3 (1970), 456–473 | MR | Zbl
[9] Kombe I., Hardy, Rellich and uncertainty principle inequalities on Carnot groups, Preprint, arXiv: math/0611850
[10] Laptev A., Weidl T., “Hardy inequalities for magnetic Dirichlet forms”, Mathematical Results in Quantum Mechanics (Prague, 1998), Oper. Theory Adv. Appl., 108, Birkhäuser, Basel, 1999, 299–305 | MR
[11] Mazya V. G., Prostranstva S. L. Soboleva, LGU, L., 1985 | MR
[12] Niu P., Chen Y., Han Y., “Some Hardy-type inequalities for the generalized Baouendi–Grushin operators”, Glasg. Math. J., 46:3 (2004), 515–527 | DOI | MR | Zbl
[13] Stein E. M., Harmonic analysis: real-variable methods, orthogonality, and oscillatory integrals, Princeton Math. Ser., 43, Princeton Univ. Press, Princeton, NJ, 1993 | MR | Zbl