Trapped modes in an elastic plate with a~hole
Algebra i analiz, Tome 23 (2011) no. 1, pp. 255-288.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{AA_2011_23_1_a8,
     author = {K. F\"orster and T. Weidl},
     title = {Trapped modes in an elastic plate with a~hole},
     journal = {Algebra i analiz},
     pages = {255--288},
     publisher = {mathdoc},
     volume = {23},
     number = {1},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AA_2011_23_1_a8/}
}
TY  - JOUR
AU  - K. Förster
AU  - T. Weidl
TI  - Trapped modes in an elastic plate with a~hole
JO  - Algebra i analiz
PY  - 2011
SP  - 255
EP  - 288
VL  - 23
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AA_2011_23_1_a8/
LA  - ru
ID  - AA_2011_23_1_a8
ER  - 
%0 Journal Article
%A K. Förster
%A T. Weidl
%T Trapped modes in an elastic plate with a~hole
%J Algebra i analiz
%D 2011
%P 255-288
%V 23
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AA_2011_23_1_a8/
%G ru
%F AA_2011_23_1_a8
K. Förster; T. Weidl. Trapped modes in an elastic plate with a~hole. Algebra i analiz, Tome 23 (2011) no. 1, pp. 255-288. http://geodesic.mathdoc.fr/item/AA_2011_23_1_a8/

[1] Exner P., Šeba P., “Bound states in curved quantum waveguides”, J. Math. Phys., 30 (1989), 2574–2580 | DOI | MR | Zbl

[2] Goldstone J., Jaffe R. L., “Bound states in twisting tubes”, Phys. Rev. B, 45 (1992), 14100–14107 | DOI

[3] Duclos P., Exner P., “Curvature-induced bound states in quantum waveguides in two and three dimensions”, Rev. Math. Phys., 7 (1995), 73–102 | DOI | MR | Zbl

[4] Bulla W., Gesztesy F., Renger W., Simon B., “Weakly coupled bound states in quantum waveguides”, Proc. Amer. Math. Soc., 125:5 (1997), 1487–1495 | DOI | MR | Zbl

[5] Ekholm T., Kovařík H., “Stability of the magnetic Schrödinger operator in a waveguide”, Comm. Partial Differential Equations, 30 (2005), 539–565 | DOI | MR | Zbl

[6] Evans D. V., Linton C. M., “Acoustic resonances in ducts”, J. Sound Vib., 173 (1994), 85–94 | DOI | Zbl

[7] Evans D. V., Levitin M., Vassiliev D., “Existence theorems for trapped modes”, J. Fluid Mech., 261 (1994), 21–31 | DOI | MR | Zbl

[8] Davies E. B., Parnovski L., “Trapped modes in acoustic waveguides”, Quart. J. Mech. Appl. Math., 51 (1998), 477–492 | DOI | MR | Zbl

[9] Aslanyan A., Parnovski L., Vassiliev D., “Complex resonances in acoustic waveguides”, Quart. J. Mech. Appl. Math., 53 (2000), 429–447 | DOI | MR | Zbl

[10] Khallaf N. S. A., Parnovski L., Vassiliev D., “Trapped modes in a waveguide with a long obstacle”, J. Fluid Mech., 403 (2000), 251–261 | DOI | MR | Zbl

[11] Roitberg I., Vassiliev D., Weidl T., “Edge resonance in an elastic semi-strip”, Quart. J. Mech. Appl. Math., 51:1 (1998), 1–13 | DOI | MR | Zbl

[12] Gridin D., Craster R. V., Adamou A. T. I., “Trapped modes in curved elastic plates”, Proc. R. Soc. Lond. A, 461 (2005), 1181–1197 | DOI | MR | Zbl

[13] Zernov V., Pichugin A. V., Kaplunov J., “Eigenvalue of a semi-infinite elastic strip”, Proc. R. Soc. Lond. A, 462 (2006), 1255–1270 | DOI | MR | Zbl

[14] Förster C., Weidl T., “Trapped modes for an elastic strip with perturbation of the material properties”, Quart. J. Mech. Appl. Math., 59 (2006), 399–418 | DOI | MR

[15] Förster C., “Trapped modes for an elastic plate with a perturbation of Young's modulus”, Comm. Partial Differential Equations, 33:7–9 (2008), 1339–1367 | DOI | MR

[16] Simon B., “The bound state of weakly coupled Schrödinger operators in one and two dimensions”, Ann. Physics, 97 (1976), 279–288 | DOI | MR | Zbl

[17] Laptev A., Safronov O., Vaidl T., “Asimptotika svyazannykh sostoyanii dlya ellipticheskikh operatorov s silno vyrozhdennymi simvolami”, Nelineinye zadachi matematicheskoi fiziki i smezhnye voprosy, v chest akad. O. A. Ladyzhenskoi, v. I, Mezhdunar. mat. ser., 1, Tamara Rozhkovskaya, Novosibirsk, 2002, 221–232 | MR

[18] Raikov G. D., Warzel S., “Quasi-classical versus non-classical spectral asymptotics for magnetic Schrödinger operators with decreasing electric potentials”, Rev. Math. Phys., 14 (2002), 1051–1072 | DOI | MR | Zbl

[19] Melgaard M., Rozenblum G., “Eigenvalue asymptotics for weakly perturbed Dirac and Schrödinger operators with constant magnetic fields of full rank”, Comm. Partial Differential Equations, 28:3–4 (2003), 697–736 | DOI | MR | Zbl

[20] Filonov N., Pushnitski A., “Spectral asymptotics of Pauli operators and orthogonal polynomials in complex domains”, Comm. Math. Phys., 264 (2006), 759–772 | DOI | MR | Zbl

[21] Pushnitski A., Rozenblum G., “Eigenvalue clusters of the Landau Hamiltonian in the exterior of a compact domain”, Doc. Math., 12 (2007), 569–586 | MR | Zbl

[22] McLean W., Strongly elliptic systems and boundary integral equations, Cambridge Univ. Press, Cambridge, 2000 | MR | Zbl

[23] Birman M. Sh., “Vozmuscheniya nepreryvnogo spektra singulyarnogo ellipticheskogo operatora pri izmenenii granitsy i granichnykh uslovii”, Vestn. Leningr. un-ta. Ser. mat., mekh., astronom., 1962, no. 1, 22–55 | MR | Zbl

[24] Birman M. Sh., Solomyak M. Z., Spektralnaya teoriya samosopryazhennykh operatorov v gilbertovom prostranstve, gl. 10, 11, LGU, L., 1980 | MR

[25] Safronov O., “Diskretnyi spektr v lakunakh nepreryvnogo pri neznakoopredelennykh vozmuscheniyakh s bolshoi konstantoi svyazi”, Algebra i analiz, 8:2 (1996), 162–194 | MR | Zbl

[26] Gokhberg I. Ts., Krein M. G., Vvedenie v teoriyu lineinykh nesamosopryazhennykh operatorov, Nauka, M., 1965, 448 pp.

[27] Vaidl T., “Obschie operatornye idealy slabogo tipa”, Algebra i analiz, 4:3 (1992), 117–144 | MR | Zbl

[28] Birman M. Sh., “O spektre singulyarnykh granichnykh zadach”, Mat. sb., 55(97):2 (1961), 125–174 | MR | Zbl

[29] Schwinger J., “On the bound states for a given potential”, Proc. Nat. Acad. Sci. USA, 47 (1961), 122–129 | DOI | MR

[30] Nirenberg L., “Remarks on strongly elliptic partial differential equations”, Comm. Pure Appl. Math., 8 (1955), 649–675 | DOI | MR | Zbl

[31] Steinbach O., Numerische Näherungsverfahren für elliptische Randwertprobleme, Teubner Verlag, 2003 | Zbl